August 9, 2010

Advice Letter 3132-G

Jane K. Yura
Vice President, Regulation and Rates
Pacific Gas and Electric Company
77 Beale Street, Mail Code B10B
P.O. Box 770000
San Francisco, CA 94177

Subject: Report on the Adequacy of PG&E Company’s Backbone Transmission Capacity Holdings and Capacity Utilization in Compliance with D.06-09-039

Dear Ms. Yura:

Advice Letter 3132-G is effective August 2, 2010.

Sincerely,

Julie A. Fitch, Director
Energy Division
July 1, 2010

Advice 3132-G
(Pacific Gas and Electric Company ID U 39 G)

Public Utilities Commission of the State of California

Subject: Report on the Adequacy of Pacific Gas and Electric Company’s Backbone Transmission Capacity Holdings and Capacity Utilization in Compliance With Decision 06-09-039

Pacific Gas and Electric Company (“PG&E”) hereby submits for filing a compliance report on the adequacy of PG&E’s backbone transmission capacity holdings and slack capacity consistent with PG&E’s proposals in Phase II of the Gas Capacity OIR, Decision (“D.”) 06-09-039.

Purpose

The purpose of this advice letter and the attached report is to comply with Ordering Paragraph 3 in D.06-09-039 and to provide the California Public Utilities Commission (“Commission”) with an update on PG&E’s backbone transmission capacity utilization outlook. Ordering Paragraph 3 states:

3. The Pacific Gas and Electric Company and the Southern California Gas Company shall demonstrate in biennial advice letter filings to the Commission’s Energy Division starting in 2008 that they hold adequate backbone transmission capacity and have slack capacity consistent with their proposals presented herein. The first filing is due July 1, 2008.

Background

In 2004, the Commission issued Rulemaking R.04-01-025 to investigate the adequacy of natural gas supplies and infrastructure to meet the long-term needs of the gas consumers in California. In D.06-09-039, the Commission determined that it was “comfortable with the total amount of firm backbone transmission capacity on both the
PG&E and SoCal Gas systems.”

To ensure that the utilities monitor the adequacy of their backbone capacity, the Commission required that the utility make biennial advice letter filings, starting in 2008, to demonstrate that they have adequate backbone capacity consistent with the showings made in Rulemaking 04-01-025. This advice letter is the second biennial filing.

Summary of Report

Based on the information contained in the attached report, PG&E has adequate backbone transmission capacity to ensure that both current and forecast demand can be met based on the criteria adopted in D.06-09-039 through 2020.

The adequacy of PG&E’s backbone transmission capacity holdings to serve core and electric customers has historically been addressed in the Gas Accord and Long-Term Procurement Plan proceedings. PG&E believes that these are the appropriate forums in which to address this issue and, therefore, will limit comments in both the advice letter and the report to addressing the adequacy of system capacity relative to current and forecast demand.

Protests

Anyone wishing to protest this filing may do so by letter sent via U.S. mail, by facsimile or electronically, any of which must be received no later than **July 21, 2010**, which is 20 days after the date of this filing. Protests should be mailed to:

CPUC Energy Division
Tariff Files, Room 4005
DMS Branch
505 Van Ness Avenue
San Francisco, California 94102

Facsimile: (415) 703-2200
E-mail: jnj@cpuc.ca.gov and mas@cpuc.ca.gov

Copies of protests also should be mailed to the attention of the Director, Energy Division, Room 4004, at the address shown above.

The protest also should be sent via U.S. mail (and by facsimile and electronically, if possible) to PG&E at the address shown below on the same date it is mailed or delivered to the Commission:

1 D.06-09-039, Finding of Fact 12.
2 In order to address the adequacy of PG&E’s infrastructure to meet current and future demand, PG&E uses the demand forecasts based on the upcoming 2010 California Gas Report.
Effective Date

PG&E requests that this advice filing become effective on regular notice, August 2, 2010, which is 32 calendar days after the date of filing.

Notice

In accordance with General Order 96-B, Section IV, a copy of this advice letter is being sent electronically and via U.S. mail to parties shown on the service list for R.04-01-025. Address changes to the General Order 96-B service list should be directed to e-mail PGETariffs@pge.com. For changes to any other service list, please contact the Commission’s Process Office at (415) 703-2021 or at Process_Office@cpuc.ca.gov. Send all electronic approvals to PGETariffs@pge.com. Advice letter filings can also be accessed electronically at: http://www.pge.com/tariffs.

Vice President - Regulation and Rates

cc: Service List R.04-01-025

Attachments

3 July 31, 2010 falls on a weekend, therefore, PG&E is moving this date to the following business day.
Company name/CPUC Utility No. Pacific Gas and Electric Company (ID U39 M)

<table>
<thead>
<tr>
<th>Utility type:</th>
<th>Contact Person: Linda Tom-Martinez</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ ELC</td>
<td>Phone #: (415) 973-4612</td>
</tr>
<tr>
<td>☑ GAS</td>
<td>E-mail: lmt1@pge.com</td>
</tr>
<tr>
<td>☐ PLC</td>
<td></td>
</tr>
<tr>
<td>☐ HEAT</td>
<td></td>
</tr>
<tr>
<td>☐ WATER</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPLANATION OF UTILITY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELC = Electric</td>
</tr>
<tr>
<td>GAS = Gas</td>
</tr>
<tr>
<td>PLC = Pipeline</td>
</tr>
<tr>
<td>HEAT = Heat</td>
</tr>
<tr>
<td>WATER = Water</td>
</tr>
</tbody>
</table>

Advice Letter (AL) #: **3132-G**
Tier: **2**

Keywords (choose from CPUC listing): Capacity, Compliance

AL filing type: ☑ Monthly ☐ Quarterly ☐ Annual ☐ One-Time ☑ Other Biennial

If AL filed in compliance with a Commission order, indicate relevant Decision/Resolution #: **D.06-09-039**

Does AL replace a withdrawn or rejected AL? If so, identify the prior AL: **No**

Summarize differences between the AL and the prior withdrawn or rejected AL: ______________

Is AL requesting confidential treatment? If so, what information is the utility seeking confidential treatment for:

Confidential information will be made available to those who have executed a nondisclosure agreement: ☑ Yes ☐ No

Name(s) and contact information of the person(s) who will provide the nondisclosure agreement and access to the confidential information:

Resolution Required? ☐ Yes ☑ No

Requested effective date: **August 2, 2010**
No. of tariff sheets: **N/A**

Estimated system annual revenue effect (%): **N/A**

Estimated system average rate effect (%): **N/A**

When rates are affected by AL, include attachment in AL showing average rate effects on customer classes (residential, small commercial, large C/I, agricultural, lighting).

Tariff schedules affected: **N/A**

Service affected and changes proposed: **N/A**

Pending advice letters that revise the same tariff sheets: **N/A**

Protests, dispositions, and all other correspondence regarding this AL are due no later than 20 days after the date of this filing, unless otherwise authorized by the Commission, and shall be sent to:

CPUC, Energy Division
Tariff Files, Room 4005
DMS Branch
505 Van Ness Ave.,
San Francisco, CA 94102
jnj@cpuc.ca.gov and mas@cpuc.ca.gov

Pacific Gas and Electric Company
Attn: Jane Yura
Vice President, Regulation and Rates
77 Beale Street, Mail Code B10B
P.O. Box 770000
San Francisco, CA 94177
E-mail: PGETariffs@pge.com
PACIFIC GAS AND ELECTRIC COMPANY

COMPLIANCE REPORT ON THE ADEQUACY OF PACIFIC GAS AND ELECTRIC COMPANY’S BACKBONE TRANSMISSION CAPACITY HOLDINGS AND CAPACITY UTILIZATION
PACIFIC GAS AND ELECTRIC COMPANY
ADEQUACY OF BACKBONE TRANSMISSION CAPACITY HOLDINGS AND CAPACITY UTILIZATION

TABLE OF CONTENTS

A. Introduction... 1
B. Adequacy of PG&E’s Backbone Transmission Capacity Holdings 1
C. Backbone Capacity Utilization .. 2
D. Demand Forecasts .. 5
E. Adequacy of PG&E’s Backbone Transmission Capacity .. 6
F. Adequacy of Local Transmission Capacity and APD Forecast............................. 8
G. Conclusion.. 9
A. Introduction

In Decision 06-09-039, the California Public Utilities Commission (Commission) adopted a natural gas transportation backbone capacity utilization guideline for Pacific Gas and Electric Company (PG&E) and Southern California Gas Company (SoCal Gas). This guideline states that if utilization of intrastate backbone transmission capacity exceeds 80-90 percent on a forecast basis, an expansion of capacity may be needed. This guideline is set as a range in order to provide the utilities with flexibility to manage how and when to make new infrastructure investments.

Decision 06-09-039 required that “the Pacific Gas and Electric Company and the Southern California Gas Company shall demonstrate in biennial advice letter filings to the Commission’s Energy Division starting 2008 that they hold adequate backbone transmission capacity and have slack capacity consistent with their proposals presented herein. The first filing is due July 1, 2008.”[1]

In compliance with the Commission’s direction, this filing updates the analysis PG&E made in Phase II of Gas Capacity OIR (R.04-01-025) and in the previous compliance filing. This updated assessment contains PG&E’s analysis of backbone transmission capacity covering the period 2011-2020.

B. Adequacy of PG&E’s Backbone Transmission Capacity Holdings

Since 1996, PG&E’s intrastate backbone transmission capacity holdings to serve core customers have been determined through PG&E’s Gas Transmission and Storage Rate Case Applications, also known as PG&E’s Gas Accord. The Gas Accord has provided stability in gas transmission and storage services, while providing, among other things, the opportunity for all participating parties to evaluate and update PG&E’s core backbone transmission and storage holdings. PG&E is also compliant with the Commission’s Opinion Regarding the Proposal for Incremental Core Gas Storage, which adopted PG&E’s core planning

standard of a 1-day-in-10-year peak day and authorized acquisition of
incremental storage capacity, firm intrastate and interstate pipeline capacity,
and/or firm peaking supply arrangements to meet the standard. PG&E
successfully acquired incremental storage capacity to meet the standard through
the 2010-2011 winter periods and will evaluate alternatives for subsequent
winter periods.

For bundled electric customers, these contractual arrangements are
determined through the Long-Term Procurement Plan (LTPP). In
Rulemaking 08-02-007, the Commission consolidated “the vast body of
procurement-related policies and procedures into one, single, comprehensive,
and authoritative document—the 2006 LTPPs.” PG&E’s original proposal for
the long-term gas supply plan was not accepted by the Commission in
Decision 07-12-050 because at that time, the Commission needed to address
and review the proposals by the Investor Owned Utilities (IOUs) more thoroughly
and assess the proposals in conjunction with other rulemaking proceedings.
PG&E, therefore, will re-file its long-term gas supply plan with the 2010 LTPP.
PG&E believes that the Gas Accord rate proceedings and the LTPP are the
appropriate forums in which to address the adequacy of PG&E’s intrastate
contractual holdings for the core and bundled electric portfolios, respectively.

C. Backbone Capacity Utilization

Available capacity provides significant value to customers even in years
without outages, supply disruptions or increased demand. Additional pipeline
capacity allows the market flexibility to move purchases between receipt points,
which results in more gas-on-gas competition at the PG&E Citygate. Additional
pipeline capacity, when combined with storage, also provides significant
flexibility for customers to time their gas purchases throughout the year. Figure
1 shows how the market utilizes the additional pipeline capacity to facilitate gas-
on-gas competition. The path with the highest utilization changes from season to
season and sometimes from month to month as the market seeks gas supplies
from the lowest priced source.

2 See D. 06-07-010, Ordering Paragraph 1, at p. 36.
In November and December 2008, PG&E’s Baja path operated at full capacity\[4\] for the month and PG&E’s Redwood path operated at 44 percent. By July 2009, PG&E’s Redwood path reached a utilization level of 84 percent while the Baja path dropped to 62 percent. Sufficient backbone capacity ensures that the marginal supply source at the California border is available to compete against any other supply source that might attempt to charge a commodity price higher than the otherwise available marginal supply.

A margin of capacity also facilitates the injection of gas into storage. Figure 2 shows the average total backbone throughput by month.

[4] The daily capacities can be higher than the firm capacity quantities used in this analysis due to reduced pressure requirements for the local transmission system and the level and location of off-system deliveries.
The months with the highest throughput on PG&E’s backbone system are not always in the months with the highest end-use demand. For example, the aggregate on-system demand on PG&E’s system in January 2009 was 1,073 MMcf/d higher than May 2009, but in May 2009 the combined path throughput of the Redwood and Baja paths was 448 MMcf/d higher than January 2009. The market takes advantage of the extra backbone capacity to time the injection and withdrawal of gas to and from the storage fields. Storage injections from the PG&E pipeline system (into all three storage providers—PG&E, Lodi Gas Storage and Wild Goose Gas Storage) — averaged 684 MMcf/d during the month of May 2009. Without the additional backbone capacity on PG&E’s system, customers would be constrained significantly in their ability to time the injection of gas into these storage fields. The ability to time storage injection provides significant value to customers. The price of natural gas can vary substantially from month-to-month and the lowest prices are usually seen in the spring and fall months. It is important to maintain sufficient backbone capacity in
order for the market to make large injections in months when natural gas prices are low.

D. Demand Forecasts

In order to address the adequacy of PG&E’s infrastructure to meet current and future demand, PG&E uses the demand forecasts based on the upcoming 2010 California Gas Report (CGR), which will be published on or around July 1, 2010. The CGR provides a comprehensive, long-term outlook for natural gas requirements for both core and non-core markets. Evaluating PG&E’s infrastructure using the CGR forecasts provides a valid assessment of the adequacy of PG&E’s infrastructure to meet current and future demand through 2020.

The off-system demand forecast in the 2010 CGR is higher than what is used in this analysis because the CGR off-system forecast included an outlook of short-term arrangements paying less than the full-tariff rate. In the analysis included in this report, PG&E used an off-system forecast based on the current volumes under long-term, full-price contracts. Short-term off-system contracts are excluded from this analysis because PG&E would not increase backbone capacity to serve the off-system market except for customers paying the full tariff rate under a long-term contract, such as PG&E’s GX-F customers. This is consistent with the approach that PG&E used in its Phase II testimony in the Gas Capacity OIR (R. 04-01-025).

PG&E developed the 1-in-10 Cold and Dry Forecast using the same “Weather Vintage” methodology described in PG&E’s analysis of backbone capacity adequacy in Phase II of R.04-01-025. This same methodology was also used in the CGR for the adverse year forecasts, although PG&E’s adverse year forecast in that report represents a 1-in-35-year Cold and Dry forecast and not a 1-in-10-year event.

The “Weather Vintage” forecast approach was used because of the need to develop a representative year with both Cold and Dry conditions. Cold and Dry conditions are not closely correlated, making it difficult to estimate the probability of weather that is simultaneously a 1-in-10-year cold year and a 1-in-10-year dry year. Adding the results of a 1-in-10-year cold scenario for core demand to a 1-in-10-year dry scenario for Electric Generation (EG) demand would produce an unrealistically high forecast of natural gas demand in PG&E’s service area,
and the combined scenario is much less likely to occur than a 1-in-10-year event. Using the Weather Vintage approach to developing the core and EG forecasts allows for a better measure of the effect on demand from simultaneous Cold and Dry conditions.

E. Adequacy of PG&E’s Backbone Transmission Capacity

Table 1 delineates the inputs used for transmission capacities of the PG&E backbone system. Table 2 compares the amount of backbone capacity to forecast demand on the PG&E system between 2011 and 2020. Based on this demand forecast, PG&E expects to have a capacity utilization rate less than 80 percent through 2020, well within the utilization criteria established in Decision 06-09-039. While there is uncertainty in this longer-term forecast, there is also lead-time for system enhancements to meet longer-term growth as it develops, should the forecast of system use change over time.

TABLE 1
PACIFIC GAS AND ELECTRIC COMPANY
TRANSMISSION CAPACITY INPUTS

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Transmission Path</th>
<th>Firm Receipt Capacity (MMcf/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silverado Path</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>Baja Path</td>
<td>1,060</td>
</tr>
<tr>
<td>3</td>
<td>Redwood Path</td>
<td>2,033</td>
</tr>
<tr>
<td>4</td>
<td>Total</td>
<td>3,223</td>
</tr>
</tbody>
</table>

The results of the intrastate capacity utilization analysis are shown in Table 2 below.
TABLE 2
PACIFIC GAS AND ELECTRIC COMPANY
PG&E BACKBONE CAPACITY UTILIZATION 2011-2020

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Year</th>
<th>Average Demand (MMcf/d)</th>
<th>1-in-10 Cold and Dry Year Demand (MMcf/d)</th>
<th>Backbone Receipt Capacity (MMcf/d)</th>
<th>Capacity Utilization Cold and Dry Year Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011</td>
<td>2,192</td>
<td>2,349</td>
<td>3,223</td>
<td>73%</td>
</tr>
<tr>
<td>2</td>
<td>2012</td>
<td>2,191</td>
<td>2,350</td>
<td>3,223</td>
<td>73%</td>
</tr>
<tr>
<td>3</td>
<td>2013</td>
<td>2,236</td>
<td>2,413</td>
<td>3,223</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td>2014</td>
<td>2,261</td>
<td>2,454</td>
<td>3,223</td>
<td>76%</td>
</tr>
<tr>
<td>5</td>
<td>2015</td>
<td>2,241</td>
<td>2,452</td>
<td>3,223</td>
<td>76%</td>
</tr>
<tr>
<td>6</td>
<td>2016</td>
<td>2,250</td>
<td>2,470</td>
<td>3,223</td>
<td>77%</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>2,268</td>
<td>2,500</td>
<td>3,223</td>
<td>78%</td>
</tr>
<tr>
<td>8</td>
<td>2018</td>
<td>2,284</td>
<td>2,517</td>
<td>3,223</td>
<td>78%</td>
</tr>
<tr>
<td>9</td>
<td>2019</td>
<td>2,236</td>
<td>2,562</td>
<td>3,223</td>
<td>79%</td>
</tr>
<tr>
<td>10</td>
<td>2020</td>
<td>2,346</td>
<td>2,559</td>
<td>3,223</td>
<td>79%</td>
</tr>
</tbody>
</table>

The capacity utilization of PG&E’s backbone system through 2020 is estimated to grow at less than one percent per year, which should allow for sufficient storage injections over this period. There are three new gas storage projects planned in northern California: Gill Ranch storage (20 Bcf inventory), Central Valley Storage Gas project (11 Bcf inventory) and the Sacramento Natural Gas Storage project (8 Bcf inventory), which would add another 24 percent of storage inventory in northern California. The addition of more natural gas storage capacity may lead to increased usage of backbone capacity to facilitate storage injections. In the future, such usage may lead to a need to modify the capacity utilization criteria to account for seasonal demands, rather than annual average demands.

While these data show that PG&E has adequate backbone capacity in aggregate, the Commission should recognize that there may be instances in which an expansion of one of PG&E’s transportation paths will be beneficial to PG&E’s customers, even when total backbone system flows are within the guidelines established by the Commission. For example, PG&E’s shippers may have an interest in the future to bring additional supplies into northern California on PG&E’s Baja path. Should that occur, an expansion of PG&E’s Baja Path from the south may be warranted, even at a time when PG&E’s total backbone flows are within the 1-in-10-year guideline, in order to allow PG&E’s customers to gain the benefit of access to new gas supplies.
F. Adequacy of Local Transmission Capacity and Design Criteria

All of PG&E’s local gas transmission systems are designed to provide adequate capacity under all weather conditions including extreme cold weather design criteria. The extreme cold weather design criteria are Cold Winter Day (CWD) and Abnormal Peak Day (APD). PG&E is not proposing to make any changes to these standards. The CWD design criterion ensures adequate capacity to meet estimated non-core customer demands. The APD design criterion ensures adequate capacity to meet estimated core customer demands.

The CWD design criterion is based on a very cold event, although not as extreme as an APD. These criteria are used to ensure adequate capacity to non-core customers. CWD has a recurrence interval of about 1-in-3 years. Local areas have their own specific CWD temperature. Across the PG&E gas system, the average daily mean CWD temperature is approximately 38 degrees Fahrenheit. When analyzing each local transmission system for adequate capacity, all core customers are assumed to be at their CWD load, while non-core customers are assumed to be at a reasonable, sustainable maximum load.

The APD design criterion is based on an extremely cold weather event that has a recurrence interval of 1-in-90 years. This corresponds to a 27 degree Fahrenheit system-weighted mean temperature across the PG&E gas system. Local planning areas have their own specific APD temperature. When analyzing each local transmission system for adequate capacity, all non-core customers are assumed to be curtailed.

When core supplies are insufficient to meet core demand, PG&E can divert gas from noncore customers, including EG customers to meet core demand. Diversion and Emergency Flow Order noncompliance charges are expected to be sufficient to cause the noncore market to either reduce or cease its use of gas. PG&E projects that in the near term, total noncore demand on an APD would be 1.5 Bfc/d. With the recent expansions of the Wild Goose and Lodi gas storage facilities and the addition of the Gill Ranch storage facility in 2010, more noncore demand will be satisfied in the event of an APD.

Most PG&E gas transmission systems are constrained by the APD design criterion and all of PG&E’s local transmission systems fully meet the APD and CWD design criteria.
The APD core forecast is developed using the observed relationship between historical daily weather and core usage data. This relationship is then used to forecast the core load under APD conditions. A three year forecast of APD demands is shown in Table 3:

<table>
<thead>
<tr>
<th>Line No.</th>
<th>2010-11</th>
<th>2011-12</th>
<th>2012-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADP Core Demand</td>
<td>3,092</td>
<td>3,100</td>
</tr>
<tr>
<td>2</td>
<td>Firm Storage Withdrawal</td>
<td>1,104</td>
<td>1,104</td>
</tr>
<tr>
<td>3</td>
<td>Required Flowing Supply</td>
<td>1,988</td>
<td>1,996</td>
</tr>
<tr>
<td>4</td>
<td>Total APD Resources (to meet demands)</td>
<td>3,092</td>
<td>3,100</td>
</tr>
</tbody>
</table>

Notes:

1. Includes PG&E’s Gas Procurement Department’s and other Core Aggregator’s core customer demands. APD core demand forecast is calculated for 27 degrees Fahrenheit system composite temperature, corresponding to 1-in-90 year cold temperature event. PG&E now uses a system composite temperature based on six weather sites. This results in a 27 degree Fahrenheit APD temperature that is roughly equivalent to the 29 degree Fahrenheit APD temperature used previously.

2. Includes supplies flowing under firm and as-available capacity, and capacity made available pursuant to supply diversion arrangements.

3. Core Firm Storage Withdrawal capacity includes firm withdrawal capacity contracted with an on-system independent storage provider.

G. Conclusion

In accordance with the requirements set forth by Decision 06-09-039, PG&E has adequate backbone capacity to accommodate current and forecast demand on the PG&E system. While PG&E has adequate backbone capacity in aggregate, there may be instances in which an expansion of one of PG&E’s transportation paths will be beneficial to some or all of PG&E’s customers, even when total backbone system flows are within the guidelines established by the Commission. Lastly, as more storage capacity is developed in northern California, there may be a need to modify the capacity utilization guideline to account for seasonal, rather than annual, gas demands.
Aglet
Alcantar & Kahl
Ameresco
Anderson & Poole
Arizona Public Service Company
BART
BP Energy Company
Barkovich & Yap, Inc.
Bartle Wells Associates
 Bloomberg New Energy Finance
Boston Properties
Brookfield Renewable Power
C & H Sugar Co.
CA Bldg Industry Association
CAISO
CLECA Law Office
CSC Energy Services
California Cotton Ginters & Growers Assn
California Energy Commission
California League of Food Processors
California Public Utilities Commission
Calpine
Cameron McKenna
Casper, Steve
Chris, King
City of Glendale
City of Palo Alto
Clean Energy Fuels
Coast Economic Consulting
Commerce Energy
Commercial Energy
Consumer Federation of California
Crossborder Energy
Davis Wright Tremaine LLP
Day Carter Murphy
Defense Energy Support Center
Department of Water Resources
Department of the Army
Dept of General Services
Division of Business Advisory Services
Douglass & Liddell
Downey & Brand
Duke Energy
Dutcher, John
Economic Sciences Corporation
Ellison Schneider & Harris LLP
Foster Farms
G. A. Krause & Assoc.
GLJ Publications
Goodin, MacBrade, Squeri, Schlotz & Ritchie
Green Power Institute
Hanna & Morton
International Power Technology
Intestate Gas Services, Inc.
Lawrence Berkeley National Lab
Los Angeles Dept of Water & Power
Luce, Forward, Hamilton & Scripps LLP
MAC Lighting Consulting
MBMC, Inc.
MRW & Associates
Manatt Phelps Phillips
McKenzie & Associates
Merced Irrigation District
Mirant
Modesto Irrigation District
Morgan Stanley
Morrison & Foerster
NRG West
New United Motor Mfg., Inc.
North America Power Partners
North Coast Solar Resources
Occidental Energy Marketing, Inc.
OnGrid Solar
Praxair
R. W. Beck & Associates
RCS, Inc.
Recon Research
Recurrent Energy
SCD Energy Solutions
SCE
SMUD
SPURR
Santa Fe Jets
Seattle City Light
Sempra Utilities
Sierra Pacific Power Company
Silicon Valley Power
Silo Energy LLC
Southern California Edison Company
Sunshine Design
Sutherland, Asbill & Brennan
Tabors Caramanis & Associates
Tecogen, Inc.
Tiger Natural Gas, Inc.
Tioga Energy
TransCanada
Turlock Irrigation District
U S Borax, Inc.
United Cogen
Utility Cost Management
Utility Specialists
Verizon
Wellhead Electric Company
Western Manufactured Housing
Communities Association (WMA)
eMeter Corporation