Purpose and Scope

This document provides the tools, ordering instructions, and the necessary manufacturing specifications and details for the fabrication and assembly of bus duct entrance terminations.

The function of the entrance box is to:

- Provide a means for connecting the customer’s bus duct to a pad-mounted transformer.
- Permit a future, larger transformer to be installed without disturbing the existing bus duct installation.
- Reduce the shutdown time for transformer replacement. The entrance box is furnished with two removable sections to permit access to the bus duct extension connections. PG&E will supply and install the entrance box.

General Information

1. The “Bus Duct Entrance Termination Unit” is used to provide transition from a customer-provided service entrance bus duct to the low-voltage service compartment of a PG&E, pad-mounted transformer, for services of 3,000 to 4,000 amps.

2. Construction

 A. The unit’s construction design shown in this document shall comply with the Western Underground Committee’s Guide 2.13, latest revision, for tamper-resistant, pad-mounted, equipment enclosures.

 B. Each top and side cover shall latch and securely self-lock at a minimum of three points, when the unit is assembled. All sharp external corners, edges, and joints shall be smoothed to prevent injury or damage to clothing.

 C. The edges, seams, and joints shall be made and formed to provide a close-fitting mating surface. Exposed welding on the outside surface of the unit(s) shall be a continuous bead, machined and ground flush.

 D. All metal work shall be cleaned free of dirt, oils, and rust, and immediately painted, both inside and outside, with one coat of suitable, rust-inhibiting primer, approximately 1.5 mils thick when dry.

 E. The interior and exterior of the housing shall be finished with one or more coats of Green Munsel, No. 5.5gy, 2.76/2.1 (PG&E No. 610 Green) paint. The total dry film thickness shall not be less than 2 mils (the total paint thickness, including primer, not less than 3.5 mils when dry).

 F. Approximately a half pint of “touch-up” paint (preferably in an aerosol spray can) shall be included and shipped with each unit (attached inside the unit to the cable support block).

3. Methods of Serving Large Commercial Customers

 A. Main Service Rating 201 Through 2,500 Amps: The approved method is by underground cable in customer-installed conduit (refer to Document 063928 for details).

 B. Main Service Rating 3,000 Through 4,000 Amps: The approved method is a PG&E-owned and installed bus duct entrance box attaching to customer-owned and installed bus duct that is a minimum of 30” long.

4. Note: Bus ducts shall only be connected to pad-mounted transformers with a minimum 30-inch deep cabinet and a secondary terminal height of 46 inches from the bottom of the cabinet (Style II-E-LB and II-F, 300 kVA and larger).
5. It is recommended to install pad-mounted transformer, bus duct entrance termination box, and customer bus duct entrance box on the same monolithic pad to avoid soil settlement issues. See Document 043818 or Document 045292 for transformer pad dimensions.

6. Service Connection
 The customer shall provide a minimum of 30 inches of bus duct, including flanged ends, elbows, and straight sections from the bus duct entrance terminating end at the side of the pad-mounted transformer (top entry is not permitted). The customer shall also supply tie straps for collecting like phases, all necessary bus extensions, and bracing for bus extensions, as required. The bus duct shall enter the transformer entrance box in a “horizontal” configuration. PG&E will make the connections from the bus extensions to the transformer secondary terminals, using insulated, flexible, copper conductor provided by PG&E.

7. To provide a water tight transition between the components, the bus duct (flanged ends provided by the customer) must match the dimensions of the transition box assembly and flange plate (Detail A on Page 8).

8. Transformer Bus Duct Cover Plate
 A cover used to close off the bus duct entrance hole left in a transformer when it is removed or replaced. This plate bolts into the same bolt holes used for the bus duct entrance termination box and can be installed locally so that the transformer can be reused without sending it to Emeryville to have the opening covered (Code 180203).

References

Connectors for Insulated Cables Underground
Distribution Systems UG-1: Connectors/Greenbook 015251
Concrete Pads for Radial-Style, Three-Phase
Pad-Mounted Transformers UG-1: Transformers 043818
Installation of Loop-Style, Three-Phase,
Pad-Mounted Transformers UG-1: Transformers 045291
Concrete Pad for Three-Phase, Loop-Style,
Pad-Mounted Transformers UG-1: Transformers/Greenbook 045292
Terminating Underground Electric Services 0–600 Volts
in Customer-Owned Facilities UG-1: Services/Greenbook 058817

Methods and Requirements for Installing
Commercial Underground Electric Services
 0–600 Volts to Customer-Owned Facilities UG-1: Services/Greenbook 063928

Installation
Notes

1. Method of installation (see Figure 1 on Page 4) - The location of the edge of the pad must first be established by consultation between PG&E and the building architect or contractor. The bus duct termination end flange and flange plate shall be located such as to permit its connection to the bus duct entrance termination box at a point 23 inches to 24 inches from the edge of the pad. The vertical centerline of the bus duct entrance termination box shall be located 23 inches from the front edge of the transformer pad (see Figure 1, Section A-A and Figure 2, Section B-B on Page 4). Additionally, there must be a minimum of 54 inches straight length between the edge of the pad and any obstruction (joint, bend, support, apparatus, wall or building, etc) in the bus duct to accommodate the 48” long bus duct entrance termination box provided by PG&E. These dimensions will accommodate all style IIB, IIC, IIE, IIF, IIG, and IIH transformers used in bus applications.

2. Bus duct flange plate (see Detail A on Page 8) - A removable bus duct end flange plate shall be provided by the customer at the transformer end of the bus duct. This plate shall not be drilled. PG&E will locate and drill 1/2-inch diameter holes in the flange plate to match the square holes in the adjustable end flange of the entrance box.

3. Transformer cabinet bus duct cutout - The horizontal centerline of the bus duct termination box in the side of the transformer shall be approximately 24 inches above the top of the pad. The cutout dimensions and drilling for bolt holes must match the dimensions and drilling of the entrance box, as determined in the field. A template is provided in the kit to help in positioning the flanged end and locating the mounting holes.

4. Bus duct connections in transformer (see Figure 3 on Page 5)
 A. For two and three bars per phase, the customer shall provide tie straps bolted across like phases where they enter the transformer entrance box.
Installation (continued)

B. PG&E will provide the flexible copper conductor and spade connectors necessary to make the connection between the secondary spades of the transformer and the customer’s bus duct.

C. The customer shall furnish the tie bars (Section F-F on Page 8) and spacers (Detail D on Page 8) with the bus duct. The bus duct must be in a horizontal configuration when entering the entrance box.

D. PG&E will provide the necessary spade supports (see Document 045291) for the protection of the transformer (supports are not part of a kit).

5. Feeder bus duct and entrance box supports - Feeder bus duct supports (where necessary) are required to be installed by the customer. The entrance box shall not be used as a bus duct support. PG&E will provide and install a support (supports are not part of a kit) for the bus duct entrance termination box, as shown in Figure 1 and Figure 2 on Page 4, and Detail F on Page 9.
Installation (continued)

Figure 1
Typical Bus Duct Assembly for Largest Pad-Mounted Transformer

Figure 2
Typical Bus Assembly for Smallest Pad-Mounted Transformer

Note: Dimensions in all Figures are not to scale.
Bus Duct Entrance Termination Box Assembly

- **Bus Duct Entrance Termination Box Top Section**
- **Locking Provision Upper Section**
- **Transformer End Flange**
- **Carriage Bolt W/Nut and Washer**
- **Cable Spacer Block**
- **Cable Spacer Block Bracket**
- **Air Vent**
- **Bus Duct Entrance Termination Box Bottom Section**
- **Locking Provision Lower Section**

Figure 3

Bus Duct Entrance Termination Box (Code 019645)

Table 1 List of Material for Bus Duct Entrance Termination Box Kit

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stainless Steel Bus Duct Entrance Termination Box</td>
</tr>
<tr>
<td>1</td>
<td>Spade Support Kit (Document 045291)</td>
</tr>
<tr>
<td>4</td>
<td>Copper Bus Bar Extensions (see Detail E on Page 9)</td>
</tr>
<tr>
<td>24</td>
<td>1" x 3/8" Carriage Bolts With Nuts and Washers</td>
</tr>
<tr>
<td>2</td>
<td>3/8" x 3-1/2" Bolt, With Nut and 3/16" Diameter Hole for Safety Lock</td>
</tr>
<tr>
<td>2</td>
<td>Safety Locks, Utilco Catalog Number PEL-1, Code 170115</td>
</tr>
<tr>
<td></td>
<td>10-Foot Length Weather Stripping</td>
</tr>
<tr>
<td>1</td>
<td>Template</td>
</tr>
</tbody>
</table>

Table 2 Recommended Tools for Assembly and Installation of Bus Duct Entrance Termination Box

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sawzall, Heavy Duty, Milwaukee #6511-W/Case</td>
<td>210075</td>
</tr>
<tr>
<td>Blades, Sawzall, Milwaukee #48-00-1171 – Package of 10</td>
<td>207674</td>
</tr>
<tr>
<td>Drill, Skil #6550, 1/2" Variable Speed Reversible</td>
<td>210026</td>
</tr>
<tr>
<td>Drill Bit Set, 1/16" to 1/2", W/Case</td>
<td>203026</td>
</tr>
<tr>
<td>Punch, Center, 3/8"</td>
<td>201305</td>
</tr>
</tbody>
</table>
Bus Duct Termination Assembly – Fully Extended

![Diagram of Bus Duct Termination Assembly](image)

Figure 4
Typical Outdoor Bus Termination
Fully Extended

- **Termination Box**
- **Customer Feeder Bus Duct**
- **Bus Bar Support Brackets**
- **1,000 kcmil, 600-V Copper Conductor**
 - Extra Flexible, 127 D Stranding
 - Code 294490
- **Cable Spacer**
- **Bus Duct Termination End Flange and Flange Plate**
- **Phase X0**
- **Phase X1**
- **Phase X2**
- **Phase X3**

- **30” Min.**
- **Pad**
- **Sec. C-C**
 - **23”-24”**
 - **See Note 1 on Page 2**

See Detail E on Page 9

X0 X1 X2 X3

Plan View

Sec. C-C

- **Fully Extended**
- **30” Min.**
- **Secondary Compartment**

See Document 045291

Bus Duct Termination Assembly

- **Fully Extended**
- **30” Min.**
- **48”**

Typical Outdoor Bus Termination

- **Fully Extended**
- **22-3/8”**
- **23”-24”**

- **Refer to Note 1 on Page 2**
Bus Duct Termination Assembly – Fully Compressed

![Diagram of Bus Duct Termination Assembly]

- **Customer Feeder**
- **Bus Duct**
- **Termination Box**
- **Secondary Compartment**
- **Plan View**

Figure 5
Typical Outdoor Bus Termination
Fully Compressed

- **30" Min.**
- **48"**

See Detail E on Page 9

30" Min.

Secondary Compartment

30" Min.

48"

C

C

30" Min.

48"

See Document 045291

Bus Bar Support Brackets

1,000 kcmil, 600-V Copper Conductor
Extra Flexible, 127 D Stranding
Code 294490

Bus Duct Termination End Flange
End Flange and Range Plate

Cable Spacer

Phase X3

Phase X2

Phase X1

Phase X0

30" Min.

Pad

23" – 24"

See Note 1 on Page 2

Section D-D
Fully Compressed

Bus Duct Termination Assembly – Details

1. **Bus Duct Termination End Flange Plate (see Detail A)**
 - 3/8" - 16 x 5/8" Long Nelson Stud Complete With 1 Flat, 1 Spring Washer, and Hexagonal Nut

2. **Only Cables and Connectors Are Furnished by PG&E**

3. **The Bottom Bus Is Always to Be Designated the Neutral Bus (see Detail C)**

4. **Phase Bus, (see Detail B)**

5. **Figure 6**
 - Termination Detail With Bus Duct End and Tie Bars

6. **Bus Duct End Flange Plate (customer supplied)**

7. **Obstruction (building, apparatus wall, support, or bend)**
 - Straight Length of Feeder Bus Duct

8. **Section E-E**
 - Bus Bar (customer supplied)

9. **Section F-F**
 - Tie Bar Connection 1/4" x 6" x 20" Long Copper (two per phase and one per neutral required) (customer supplied)

10. **Spacer 3" x 20" Long Copper (thickness to suit) (customer supplied)**

隙:

- **Bus Duct Termination Assembly – Details**
- **Bus Duct Termination End Flange Plate (see Detail A)**
- **Only Cables and Connectors Are Furnished by PG&E**
- **The Bottom Bus Is Always to Be Designated the Neutral Bus (see Detail C)**
- **Figure 6**
 - Termination Detail With Bus Duct End and Tie Bars
- **Bus Duct End Flange Plate (customer supplied)**
- **Obstruction (building, apparatus wall, support, or bend)**
 - Straight Length of Feeder Bus Duct
- **Section E-E**
 - Bus Bar (customer supplied)
- **Section F-F**
 - Tie Bar Connection 1/4" x 6" x 20" Long Copper (two per phase and one per neutral required) (customer supplied)
- **Spacer 3" x 20" Long Copper (thickness to suit) (customer supplied)**
Bus Duct Termination Assembly – Details (continued)

Detail E
Copper Bus Bar Extension
(see Table 1 on Page 5)

1-1/8"
1-3/4"
8"
5/8"
1-3/4"
20-1/2"

3/4"
3/4"
1-3/4"
1-3/4"

3" Min. Air Clearance From End of Bus to Door or Metal

1. Use only 1,000 kcmil copper cable (Code 294490).

Table 3 Copper Conductor Requirements

<table>
<thead>
<tr>
<th>Main Switch Rating</th>
<th>Number of Conductors Per Phase</th>
<th>Number of Neutral Cables</th>
<th>Approximate Footage of Conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,500</td>
<td>4</td>
<td>2</td>
<td>140</td>
</tr>
<tr>
<td>3,000</td>
<td>5</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>3,500</td>
<td>6</td>
<td>3</td>
<td>210</td>
</tr>
<tr>
<td>4,000</td>
<td>7</td>
<td>4</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 4 List of Materials for Bus Termination Assemblies (see Detail B and Detail C on Page 8)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal Connector, Compression-Type, Cable-to-Flat, for 1,000 kcmil Cable</td>
<td>303461</td>
<td>015251</td>
</tr>
<tr>
<td>2</td>
<td>Screw, Cap (bolt), Hex. Head, 1/2" x 2-1/2", Everdur or Equivalent</td>
<td>193177</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Nut, Bolt, Hex., 1/2", Everdur or Equivalent</td>
<td>195013</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Washer, Round, 1/2", Everdur or Equivalent</td>
<td>195252</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Washer, Lock, 1/2", Everdur or Equivalent</td>
<td>195193</td>
<td>–</td>
</tr>
</tbody>
</table>
Revision Notes
Revision 10 has the following changes:

1. Revised General Information Note 3B on Page 1.
2. Added Note 5 under General Information on Page 2. re-numbered Notes 6 - 8 on Page 2.
3. Added two new references on Page 2.
4. Revised Installation Section Note 1 on Page 2.
5. Revised Figure 1 and added Figure 2 on Page 3. Re-numbered Figures 3 – 6 on Pages 5 - 8.
6. Revised Item 1 description in Table 1 on Page 4.