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Abstract

The adoption of smart meters in California has yielded a stream of hourly electric usage (AMI) data for
nearly every residential utility customer. These data are being put to use in a variety of ways, including
more rapid identification of outages and development of time-of-use rate structures. However,
California’s energy efficiency (EE) programs and evaluations are only beginning to explore the vast
insights offered from AMI data. In this paper we investigate the potential for increased electricity and
demand savings by targeting customers for EE intervention based on features derived from their AMI
usage profiles. Using recent past program participants, these data-driven targeting strategies are
developed and tested against observed savings outcomes. Our analysis focuses on two long-standing
residential EE programs offered by Pacific Gas and Electric Company, the HVAC Quality Maintenance
(AC/QC) program and the whole home retrofit (Advanced Home Upgrade, or AHU) program. Results
show that effective targeting can yield significantly enhanced per-capita savings and peak demand
reduction. We find that even straightforward targeting schemes, based on pre-intervention usage data
alone, are effective at selecting high-saving customers while also limiting the fraction of customers who
consume more after the program. The highest performing schemes have the potential to increase per-
capita savings and demand reduction by 50 — 150% when applied at moderate levels. Special attention is
given to potential pitfalls, which could lead both programs and evaluations astray, including the effects
of outliers and other statistical artifacts, and recommendations are given to avoid such stumbling blocks.
Finally, we discuss broader implications, motivations, and barriers to implementing customer targeting.



Executive Summary

With the advent of smart meters and advancing data analysis techniques, effective customer targeting
presents a major opportunity to increase the savings and cost effectiveness of many energy efficiency
(EE) programs. In this whitepaper we develop and test customer targeting schemes based on interval
data analytics. If utilized in current and future EE programs, these and similar methods can enhance the
value of EE to participating customers, yield higher returns on investments from the ratepayer base, and
provide more benefits at lesser cost for utility program sponsors.

This research analyzes data from two longstanding Pacific Gas and Electric (PG&E) residential EE
programs to investigate the potential for improved electricity savings and peak demand reduction; the
HVAC quality maintenance (AC/QC) and whole home retrofit (Advanced Home Upgrade) programs. For
both programs cooling energy savings' are estimated for each participating customer via weather-
normalized pre/post billing analysis. Customer targeting schemes based only on customers’ pre-
intervention electricity usage data then select subsets of the full sample. Savings for these subsets are
compared to the full sample to gauge the effectiveness of the particular scheme.

The customer targeting approaches rely on intuitive considerations and are built from characteristics
readily derived from a customer’s hourly interval electricity usage data. These features are shown
schematically in Figure E1 and together are expected to be indicative of high consumption, inefficiency,
and potential for evening peak demand reduction. Some of these characteristics (i — iii) could be
determined from monthly billing data alone while others (iv — vi) require hourly data.

@8"0”9 correlation @ Strong ramp in daily demand
I

between temperature
and usage /) Average daily

summer demand

®

High total
summer usage

O

High ratio between summer
, and shoulder usage

Electricity Demand

Average demand during
shoulder months

12 am 6 am 12 pm 6 pm 12 am
Time of Day @Evening Peak

Figure E1: Schematic summer (July) and shoulder month (April) usage and load shape characteristics that would be
expected for a customer with high savings potential from an HVAC or building shell energy efficiency program

! While not the exclusive benefit of these programs, we focus specifically on cooling for several reasons. First, cooling savings
account for a high fraction of total savings within both programs. Second, cooling needs are a primary driver of peak demand
and high electricity procurement costs. Third, studying cooling load provides for a straightforward focus of this research.



The features i — v in Figure 1 are rolled into a conglomerate targeting strategy based on threshold values
for each element. As thresholds are made more stringent, the targeting scheme becomes more selective
in an attempt to identify customers with higher savings potential. The conglomerate scheme is applied
to pre-program usage data and the resulting subsets consist of customers who have passed each
threshold. Figure E2 shows how average per-household savings change (y-axis) for the Advanced Home
Upgrade program as the targeting criteria are enhanced (x-axis). Three timeframes are broken out and
studied independently: annual, summer, and summer peak.
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Figure E2: Advanced Home Upgrade - Per capita normalized mean energy savings (kWh/hr) for each level of
targeting applied during the three time periods: annual, summer (June — September) and summer peak (June —
September; 3 — 9 pm). At the Loose, Medium, and Strict targeting levels, approximately 27%, 62%, and 86% of
customers are removed.

Over each timeframe Figure E2 shows that applying the targeting filters substantially increases per-
capita savings. Key findings include,

e Average household savings are more than doubled at the Moderate targeting level compared to
the full sample.

e When the Loose criteria are applied, eliminating more than a quarter of the participants, total
program cooling savings increases, indicating the lower-level filtering is particularly effective at
removing customers with a propensity for neutral and negative savings.

e The summer timeframe is the predominant driver of cooling savings. Though accounting for only
a third of the annual hours, the summer accounts for 70% of the annual savings.

Similar trends are observed in PG&E’s residential HVAC quality maintenance (AC/QC) program.

While the conglomerate filter is clearly effective, additional insights are gained from studying the
performance of the individual criteria of Figure E1. In Figure E3 we show how electricity savings change
as several individual criteria are applied in isolation. Similar to the results for the conglomerate filter,
one can see that most individual criteria are effective at selecting customers with higher average
savings.
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Figure E3: Advanced Home Upgrade. Per-capita summer electricity savings for remaining program participants
after filtering based on the identified individual criteria.

In both Advanced Home Upgrade and AC/QC, the total summer usage filter (iii) is very effective in
predicting electricity savings and peak demand reduction. Similarly, the daily average maximum-to-
minimum demand ratio (v) underperforms in both programs. In general, the spread in performance of
the individual criteria shown in Figure E3 illustrates the need for empirical evidence in developing
specific targeting strategies.

Further insight is gained when focusing on specific geographic regions. The Advanced Home Upgrade
sample contained a large proportion of participants from both the hot Central Valley and the more
temperate climate zones. Results indicate that the neutral and negative savers eliminated by the lower
targeting levels originate almost exclusively within temperate climate regions. Collectively, customers in
these regions save very little electricity from the building shell and HVAC system EE measures provided
through the programs. This is a consequential observation as it suggests that both program and
targeting strategies can be made more effective if focused by climate region. In that vein, Table E1 gives
Central Valley savings results and average percentage household savings for two high performing
individual filters: total summer kWh, and the ratio between summer-to-shoulder month usage.

Table E1: Central Valley Subset — Comparison of Summer kWh to Summer-to-
Shoulder Ratio Filters; Average Household Savings

Filter Total Summer kWh Summer to Shoulder Ratio

% Customers | Summer kWh % Household | Summer kWh % Household
Filtered Out Savings Savings Savings Savings

0 712 19% 712 19%

25 883 20% 880 21%

50 1,055 20% 1,022 23%

75 1,308 21% 1,170 26%

90 1,457 19% 1,269 28%

The total summer usage filter isolates high users while the summer-to-shoulder ratio attempts to
identify inefficiency. While both criteria yield substantially increased savings, monitoring savings as a



percentage of total usage shows the filters succeed for different reasons. When applying the summer
kWh filter, the percentage household savings is relatively static across increasing levels of usage. This
indicates that the higher per-capita savings is attributable to selecting larger households with higher
total usage. In contrast, after the summer-to-shoulder filter is applied, we observe a substantial increase
in savings as a percentage of household usage, which indicates this criterion is identifying customers
who offer a higher savings opportunity due to inefficiency. Strategically combining these elements
provides a more optimal and robust targeting scheme. Table E2 gives recommended targeting
parameters for retrofit programs operating in the Central Valley along with the percentage of
participating Advanced Home Upgrade customers filtered out at each step. At the 50% targeting level,
per-household savings is observed to increase by more than a factor of 1.5.

Table E2: Recommended Central Valley Targeting Scheme;
Threshold Filter Values

% Customers Average Daily Summer to Shoulder®
Filtered Out Summer kWh (iii) Usage Ratio (ii)

10 12.93 0.827

25 19.60 0.827

50 26.98 1.138

75 34,58 1.498

90 42.14 1.805

®Summer = June, July, August; Shoulder = November, February, March

Because the customer targeting schemes developed here are straightforward to compute from and
apply to a large population of customers, they can be directly implemented to support future programs.
The quantification of enhanced electricity savings and peak demand reduction within multiple programs
upon customer targeting also provides a starting point for the valuation of AMI data and analysis. Within
existing downstream programs, identifying customers who stand to benefit the most from a particular
intervention can motivate enhanced and individualized value propositions to encourage participation.
The opportunity is particularly salient within program designs, including Pay-for-Performance, for which
identifying customers at the outset with high savings potential has inherent value to program
implementers who are incentivized based on savings observed directly at the meter. Especially if
overlaid with demographic and/or customer segmentation information, powerful messaging can be
developed and directed to customers most in need of EE support.

Beyond enhancing savings for traditional programs, customer targeting can help EE compete as a
distributed energy resource (DER). Effective targeting ensures that EE is directed to customers best able
to deliver measurable grid benefits. However, structural changes are needed within EE program design
and measurement for this vision to become reality. Counter to many traditional program designs, in the
DER landscape, we posit that EE programs are likely to compete most directly with other resources if
designed specifically to achieve and reward reliable savings at the meter. When considered alongside
technologies such as solar, storage, and demand response, all of which allow for definitive and
immediate measurement with a high degree of certainty, EE will be most competitive if resources are
directed to high potential customers with results that can be quantified via meter-based analysis.



l. Introduction

California accounts for nearly $1 billion of the more than $6 billion spent annually on publically funded
energy efficiency (EE) programs in the United States.’ Despite the impressive investment, if the
residential portion of this EE funding were spread evenly across the state, each household would only
receive about $15.° This is enough to replace a few light bulbs, but orders of magnitude short of the five-
figure cost of a deep retrofit. The limited reach of EE funding compels a simple question: How can
resources be directed to the customers who will save the most? In this paper we show how smart meter
data can be used within existing programs to target high-saving customers.

More specifically, we explore how characteristics of a customer’s usage data can inform filtering rules
that select customers with greater energy savings achieved ‘at the meter.” The analysis focuses on
Pacific Gas and Electric’s (PG&E) residential HVAC quality maintenance (AC/QC) and whole home retrofit
(Advanced Home Upgrade) programs. Because the filter rules developed here are straightforward to
compute from and apply to a large population of customers, they can be directly implemented in
support of future program targeting. We observe that billing data alone can provide for effective
targeting schemes, but that insights offered through interval (AMI) data are essential to understanding
the impacts of targeting on key metrics such as peak demand reduction.

In addition to increasing savings at the meter, effective customer targeting can also enhance utility
avoided costs and cost effectiveness of EE programs. In particular, as Pay-for-Performance® programs
take root, and as EE policy goals intensify,” program administrators, implementers, and regulators all
have a stake in optimizing savings with data-driven techniques. Additionally, by selecting customers with
higher propensity to deliver savings at the meter, targeting has the potential to make EE a more
competitive and reliable grid resource within the broader energy and distributed energy resources
market.

Il. Background

Recent billing analysis studies on several California residential EE programs reveal consistent patterns:

1. Impacts observed at the meter vary widely among program participants.
2. A small fraction of program participants accounts for a high fraction of the total metered savings.
3. A significant number of program participants display negative savings (i.e. consume more energy

after the program than before) when assessed at the meter.

Two residential HVAC EE programs were investigated as part of the Phase | AMI Billing Regression Study®
conducted by Evergreen Economics: PG&E’s Residential Quality Maintenance (AC/QC) program, which
promotes HVAC system maintenance and is also a focus of this work, and Southern California Edison’s

*https://library.ceel.org/sites/default/files/library/12670/CEE_2015 AIR Tables March 2015.pdf; Table 4
*http://www.census.gov/quickfacts/table/HSG010215/06; California holds nearly 14 million households. The residential sector
accounts for roughly one-fifth of California EE spending (5200 million). $200M/14M households = $13.30/household

4 Pay-for-Performance programs are designed to pay all or part of the rebate based on the savings observed at the meter.

> For instance, in California recent legislation (Senate Bill 350) has doubled the energy efficiency goals within existing buildings.
& AmI Billing Regression Study (Phase 1). Evergreen Economics, 2016. CALMAC ID: SCE0383.01
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(SCE) Quality Installation program (RQl), which incentivizes HVAC system installation based on industry
performance standards. Both of these programs achieve savings goals based on deemed’ engineering
estimates relative to a counterfactual® baseline.

Results on the AC/QC program indicated that participant average annual household electricity savings
were on the order of 3.5%, with significantly higher savings during summertime and periods of peak
demand. In aggregate these results are sensible. However, when customers were ranked and grouped
by their pre-period baseload® energy usage, total program savings were observed to originate almost
exclusively from the top 25% of customers. Further, the bottom 50% of customers collectively
accounted for negative savings. In other words, in aggregate, half of program participants increased
energy usage after the program. The negative savers had the effect of discounting a quarter of the
positive savings in this baseload binning scheme. Results of the SCE RQIl program show similar
trends.'"

Recent study of the whole home retrofit Energy Upgrade California (EUC) Program™ provided a unique
perspective via a combination of billing analysis and complementary customer surveys. The billing
analysis results showed that 12% of customers increased energy usage by at least 5% in the year after
program intervention, while an additional 18% were near neutral savers (-5% to +5% savings). Survey
results of the high negative savers revealed that half of these customers noted a change in heating
behavior indicative of takeback, compared with only 19% among the population of high positive savers.
Additionally, two-thirds of the negative savers indicated a change in occupancy compared to only one
quarter of high positive savers. These results suggest that when measuring savings at the meter,
enrolling customers likely to save more than average while avoiding negative-saving customers may
make or break the success of an EE program.

It is worth noting that any sample of customers will show a distribution of pre/post “savings” due to
natural variability in usage. Especially for ‘light touch’ EE intervention, the program may not be the
primary factor that causes an average customer to use more or less. Therefore, the term ‘negative saver’
does not necessarily indicate a customer who used more because of the program. Nevertheless, the goal
of customer targeting — finding customers most likely to yield high positive savings — remains.

7 ‘Deemed’ savings refer to engineering estimates for the average savings that would be expected for a particular EE measure.

® The ‘counterfactual’ refers to what would have happened in the absence of the program. Many EE programs are designed to
produce savings, and evaluated to assess savings, relative to the counterfactual.

® Here ‘baseload’ refers to a household’s average minimum electricity demand throughout the course of a day. Baseload may
also describe the minimum energy demand for a given region that must be serviced by power providers.

10 Again customers were binned by pre-program baseload energy consumption. In this case average annual total household
electricity savings were found to be 7.0%. Again the lower usage customers increased consumption after program intervention,
while the 25% of highest usage customers accounted for approximately 65% of total savings.

" |n both programs, the negative savers may exhibit a takeback effect. Consider the RQIl program, in which customers have a
new HVAC system installed. If these households did not have central AC before participating, or had a smaller system, even
optimal installation of an energy efficient unit would result in increased electricity demand. In the HVAC maintenance (AC/QC)
program, it could be that a high occurrence of repairs, returning partially failed systems to full service, occurred along with
program measures for many of the negative saving customers. However, without further research, these possibilities will
remain unconfirmed.

2 pPG&E Whole House Program: Marketing and Targeting Analysis. Opinion Dynamics Corporation, 2014. CALMAC ID:

PGE0302.05



lll. Customer Targeting

In developing EE targeting criteria, we note that high usage by itself does not guarantee system
inefficiency. Some customers have high usage simply because they have higher than average needs for
heating, cooling, maintenance, and lighting. Therefore, we posit that even a minimalist EE targeting
strategy should include a specific criterion focused on end use efficiency in addition to a total usage
threshold to best gauge savings potential. In Table 1 we give the total electricity usage for three
hypothetical customers on two days. Day 1 has a high temperature of a moderate 70 °F and the high on
day 2 is 90 °F, a hot day.

Table 1
Outside High Daily Electricity Usage
Temperature Customer A Customer B Customer C
Day1l: 70°F 3 kWh 10 kWh 20 kWh
Day2: 90°F 6 kWh 17 kWh 22 kWh

If this were the only available information, which customer should be recruited for an air conditioning or
building shell EE program? On both the mild and hot days Customer C uses the most electricity. However
her usage only increases by 10% after the sizable rise in outside temperature. It would seem that
baseload measures may be more appropriate for this customer.”> By comparison, on the hotter day,
Customer A’s electricity usage doubled, a potential indication of inefficiency. But with a total
consumption, even on the hot day, of only 6 kWh, Customer A has little potential for savings and
therefore would not be a top choice for program intervention. Finally, Customer B has significant total
electricity usage and shows a considerable fractional increase (70%) in total usage on the hot day. Based
on these limited data, only Customer B meets both the threshold of high usage and high temperature
sensitivity that would indicate high potential to save.

Building upon these considerations, Figure 1 is a schematic of the energy usage characteristics we
hypothesize a customer with high savings potential for air conditioning or building shell measures would
exhibit. The red curve indicates average daily summertime demand while the dark blue curve shows
average daily demand during the milder shoulder months for the same customer.*

3 Another possibility for the small usage change could be the lack of an HVAC system, or a system in need of repair. In such a
case, this customer would be likely to demonstrate significant takeback after program participation, which would lead to
negative savings in a pre/post billing analysis.

' Summertime is taken as June — September, typically the hottest months in central California climate zones, and the shoulder
months are taken as February, March and November. Cooling needs are expected to be greatest in the summer months while
electricity usage for combined heating and cooling is expected to be minimal during the shoulder months.
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Figure 1: Summertime and shoulder month load shapes for an ideal residential customer for an HVAC or building
shell energy efficiency program

The metrics i — iii are associated with total electricity usage while iv — vi are those related to evening
peak demand. Below we develop and test targeting filters based on one or more of these criteria:

Expected predictors of electricity savings potential

i. Statistical correlation®® between hourly readings of outside temperature and demand (ranges
from-1to 1)

ii. Ratio of total summertime (June, July, August) electricity consumption to usage in the mild
shoulder months (November, February, March)

iii. Total summertime (June, July, August) electricity usage in kWh

Expected predictors of electric peak demand savings potential

iv. Average hourly usage increase (kWh/hr) during the ramp up period to the evening peak (defined
as 3 pmto 7 pm)
v. Average of the ratio between daily maximum and minimum demand, as derived from hourly

meter readings

vi. The fraction of total summer load occurring during peak hours (defined as 3 pm to 9 pm)

The seasonal and total usage metrics i — iii, illustrated here with hourly interval data, can be discerned
through analysis of monthly billing data if necessary, but the peak demand filters iv — vi can only be
assessed with interval data. To optimize a residential building shell or HVAC EE program for electricity
(kWh) savings, filters based on these demand (kW) metrics may be overly restrictive or even

1 Using the cor function in R; For an explanation on correlation, see https://www.socialresearchmethods.net/kb/statcorr.php
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counterproductive. However, to target peak demand reductions along with total energy savings,
combined criteria iv — vi are hypothesized to pay dividends.

In the next section, we develop and apply customer selection filters using threshold criteria for
predictors i — v at varying levels. The threshold values for each filter are computed from customers’ pre-
intervention AMI data. We ascertain the ability of this targeting scheme to select customers with above
average electricity savings and peak demand reduction and quantify the associated change in average
per-capita'® savings.

IV. The Programs and Datasets

Analysis focuses on three datasets: 1. Recent participants in PG&E’s residential HVAC quality
maintenance program (Air Conditioning Quality Care; AC/QC); 2. Recent participants in PG&E’s whole
home retrofit (Advanced Home Upgrade) program; 3. A ‘null’ dataset of randomly selected residential
customers who did not participate in either program. The datasets contain 1-hour interval electricity
usage data for a minimum of one full year pre- and post-intervention for every customer.

i. Air Conditioning Quality Care (AC/QC)

The AC/QC dataset contains 1,216 participating customer records for program years 2012 — 2014 and
was also used for the Evergreen Economics study® discussed above. All data cleaning steps performed by
Evergreen were retained for this analysis along with additional cleaning described in the Methodology
section below. In the years studied, the AC/QC program incentivized contractors to perform several
measures including system assessment and cleaning, refrigerant charge adjustment, blower motor
retrofit, and duct sealing. Contractors were allowed to complete one or more of these measures for any
job and received a “kicker” incentive for jobs with multiple measures.

ii. Advanced Home Upgrade

The Advanced Home Upgrade dataset contains records from 6,286 participating customers spanning
2013 — 2016 and was also used in the development of the CalTRACK" billing analysis platform. Advanced
Home Upgrade is part of the Energy Upgrade California (EUC) program and is designed to deliver whole
home retrofits that reduce household energy usage by 20% or more through building shell and HVAC
upgrades. Most often, lighting and plug loads are not addressed. Ex ante savings are calculated by
contractors using approved modeling software and verified by quality control checks performed by the
program implementation firm. The EUC program also hosts the Basic Home Upgrade pathway that
delivers retrofits with deemed savings estimates. The Basic path is not studied here.

iii. Sample Characterization

Figure 2 illustrates California’s climate zones™ and gives a breakdown of participants by zone. Only
customers who passed all data cleaning steps (and were therefore included in the analysis) are shown.

1 Throughout this paper per-capita is used synonymously with per-household

7 http://www.caltrack.org

" The Pacific Energy Center’s Guide to California Climate Zones and Bioclimatic Design, 2006.
https://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/climate/california_climate_zones_01-
16.pdf
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Nearly all AC/QC participating customers live in climate zones 11, 12, and 13. Collectively these areas
comprise the Central Valley, an inland region with hot and dry summers and relatively cold winters.
Advanced Home Upgrade also realized significant participation in the Central Valley, but had many
participants from across PG&E’s service territory, including in the mild coastal climate zones.
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Figure 2: Left: The California Climate Zones, reproduced from ref. 18. Right: AC/QC and Advanced Home Upgrade
program participants by climate zones. Only customers who passed all data cleaning steps are shown.

The distribution of total pre-program annual household energy usage for the AC/QC and Advanced
Home Upgrade samples is given in Figure 3.
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Figure 3: The distribution of annual electricity usage for participating AC/QC and Advanced Home Upgrade
customers in the dataset

The AC/QC distribution peaks around 8 MWh compared to approximately 6 MWh for Advanced Home
Upgrade. The average total annual energy usage for the AC/QC participants was also higher at 9.9 MWh,
compared to 8.0 MWh for Advanced Home Upgrade. The peak in the AC/QC distribution occurs



approximately 30% higher than the average household consumption across PG&E’s service territory.™
The higher usage reflected in the AC/QC dataset is consistent with the Central Valley’s higher heating
and cooling needs and larger home sizes compared to the coastal regions that are prevalent in the
Advanced Home Upgrade sample. Both samples show a long tail with dozens of customers consuming
more than 20 MWh annually.

V. Methodology and Experimental Design

Basic data quality filters were performed on each customer’s usage data, including (1) mean demand
must be greater than 110W, (2) data must cover at least 180 days, and (3) fewer than 15% of readings
are allowed to be zero. Table 2 shows how these quality filters impacted the total sample size and the
application use for each subset of data.

Table 2
Customers Remaining in Sample
Data Cleaning Step AC/QC AHU Null
Initial 1,216 5,981 6,544
Pre-period load characteristics 1,204 4,843 6,374
Pre-period CDD model estimation 1,118 4,179 6,342
Post-period CDD model estimation 930 1,786 5,785

A significant fraction of the Advanced Home Upgrade sample was eliminated, especially in the post-
period data cleaning step. It is likely that more of the sample could be retained with more fastidious
procedures, including interpolation schemes for absent meter-reads. However, sufficient sample
remained without these measures for the purposes of this study and the authors chose to proceed with
the smaller dataset. Consistency checks between retained and eliminated customers showed no issues.

The following steps were performed to compute a pre/post electricity savings assessment for each
customer and apply targeting filters:

i. Computing Pre-Period Load Characteristics

Customer data is filtered to the year before program intervention. These data are then used to compute
the usage metrics that are illustrated in Figure 1 and given in Table 3 below. We also compute a suite of
“basic metrics” as defined by the open-source meter data analysis package VISDOM.*

ii. Compute Cooling Energy Savings

In this study we focus specifically on cooling for several reasons. First, both programs service AC systems
and/or provide building shell improvements. While the latter would also be expected to yield gas and
potentially baseload savings, we take it as a prerequisite that a targeted customer should be expected to

¥ pG&E’s Energy Efficiency Business Plan 2018 — 2025; Residential Appendix p. 17;
https://media.wix.com/ugd/0c9650_cbeb1d9e14cf4575845e8d5cd6bce57f.pdf

2 Sam Borgeson, Jungsuk Kwac and Ram Rajagopal (2016). visdom: R package for energy data analytics. R package version
0.7.0. https://github.com/convergenceda/visdom



https://github.com/convergenceda/visdom
https://media.wix.com/ugd/0c9650_cbeb1d9e14cf4575845e8d5cd6bce57f.pdf

deliver some degree of variable electricity savings after substantial building shell work. Second, meeting
cooling needs is a primary driver of peak demand and high electricity procurement costs and associated
savings are thus particularly valuable. Third, isolating variable load provides for a straightforward focus
of this research. Often throughout this paper we refer to the cooling savings estimates simply as savings.

a. Model Cooling Energy Usage

To isolate cooling energy from total household load, we run a weather normalization regression model
that explains total daily kWh (KWH) as a function of daily cooling degree hours (CDH) and an indicator
for weekend (WKND) or weekday. A day’s CDH is the sum of the degrees the outside temperature is
above 65°F (or O if cooler than 65°F) across all hours, h, in each day, d.

24
CDH,; = max(Touth,d - 65,0)
h=1

KWHy; = c+a-CDHy+ B -WKNDy + ¢

The regression coefficient a quantifies the cooling sensitivity of each household and can be used to
predict daily cooling energy given a computed CDH for day d. The weather normalization model is run
for each customer using data from the cooling season (May through September) of both pre- and post-
intervention years. An additional modeling approach was tested in which unique change point
temperatures were determined for each customer.” Generally this model yielded similar results and has
the advantage of allowing temperature responses to vary both above and below the change point.
However, this method is more complex and not without drawbacks.?” For the purposes of this research
we will report CDH model results for usage and kWh savings results.

b. Compute Cooling Savings

Now, using daily weather data from the post period, we compute post-period daily CDH and use the a
coefficients from both the pre and post models to predict daily cooling energy. The predictions using the
pre-intervention coefficient are used as the counterfactual for how much cooling energy would have
been required if the efficiency intervention had not occurred. Thus the savings estimates can be made
by computing the difference between model estimates. We use different subsets of post-period
weather data to compute annual (365 days of data), summer (June through September), and summer
peak period savings (June through September; 3 pm through 9 pm).

iii. Determine Peak Summer Demand Savings

Using data from each customer from the peak demand period (3 — 9 pm) for every day in the pre-
intervention summer, we compute the overall maximum hour and 97th percentile hour of evening

*! The alternative model also applies a single change point, but the best change point is selected separately for each individual
customer via a parametric search of candidate change points, accepting the one that explains the most variance (the max R?).
This model allows for temperature responses to vary both above and below the change point.

%2 The added degrees of freedom can provide a better fit for some customers (for instance households with atypical balance
point temperatures), but they can also overfit data from non-temperature responsive homes and produce higher variation and
thermal response outliers.



demand. Next, we calculate the same metric using post-intervention summer days. By taking the
difference between the pre- and post-intervention values, we obtain an estimate of peak demand
reduction for each customer. The cooling energy and demand reduction metrics then become the values
used to quantify the performance of usage features applied as customer filters.

iv. Filter Customers via Pre-Program Usage Metrics

Finally, with the usage metrics from the pre-intervention period (the same information available to
program administrators at the time), we flag targeted customers. For example, a targeted customer
might have overall consumption greater than a certain threshold value, show an evening-peaking load
profile, have a higher than average increase in consumption during the summer, etc. Whatever the filter
criteria, they include some customers and exclude others and thereby define a subset of customers. We
compute the mean value of the energy and 97" percentile peak demand savings for the targeted
subsets and compare the results to the untargeted program outcomes.

We start with a set of “conglomerate” filters chosen based on first principles and professional
judgement (Figure 1) and define three levels, Loose, Moderate, and Strict, for their thresholds. At these
levels approximately 70%, 36%, and 14% of customers remain in the sample. After applying these filters,
we track the change in observed savings in the subsets of customers they isolate. To better understand
the performance of individual targeting criteria and to compare to the conglomerate filter, the individual
criteria are tuned to eliminate a progressing fraction of customers (10%, 25%, 50%, 75%, 90%) and the
resulting performance is assessed via the mean summertime savings across the resulting subsets of
customers. With this approach we can compare the performance of the individual metrics to the
compound conglomerate filters during the time period of highest intensity savings.

v. Treatment of Outliers

Savings estimates are computed from both the full cleaned sample and a sample consisting of the
middle 3 — 97% of savers. By removing the 3% of lowest and highest saving customers, we attempt to
ensur