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1 Executive Summary 

This report summarizes the project objectives, technical results and lessons learned for Electric Program Investment 

Charge (EPIC) Project 2.07 Real Time Loading Data for Distribution Operations and Planning, as listed in the EPIC Annual 

Report. 

1.1 Project Objectives 

The purpose of this project was to determine the best way to use SmartMeterTM, Supervisory Control and Data 

Acquisition (SCADA), photovoltaic (PV) system generation, Geographic Information System (GIS), weather, and other 

relevant data within an analytical framework to deliver better real-time and forecasted loading information for 

Distribution Operators, Distribution Engineers, and Planners (collectively, the “End Users”), and assist them in making 

more informed decisions in their day-to-day activities. 

Currently, the End Users only have access to real-time and historical amperes (amps), megawatt (MW) and mega volt 

amp (MVAR) data when a device is SCADA-equipped. With limited deployment of SCADA sensors on the distribution grid 

and limited real-time loading data, it is difficult for End Users to make detailed circuit-level decisions with confidence.  

Today, for non-SCADA devices, end users primarily access either peak load data or aggregated raw Advanced Metering 

Infrastructure (AMI) historical loading converted to amps. The peak load data is calculated using load flow models based 

upon customer kilowatt-hours (kWH) consumption as well as customer kilowatt (kW) (where available) and represents 

the seasonal peak. The aggregated raw AMI data typically uses the past 30 days of data with a lag of 2 days. This project 

will provide real-time and forecasted loading visibility to the End Users, allowing them to take more informed decisions 

for planned and unplanned events. 

1.2 Project Overview 

Pacific Gas and Electric Company (PG&E) contracted with an external vendor that had previously worked on load 

forecasting, and had developed proprietary models for both bottom-up and top-down forecasting. Due to their 

proprietary nature, only limited descriptions of these models are provided in this report. A new reconciled model was 

developed through this project, which aimed to determine which of the two previously-developed models provided the 

best forecast, based on the data available. 

There were two sequential tasks in this project. First, a retrospective forecast demonstration (task 1) of the achievable 

precision for short-term forecasts at distribution nodes was conducted. It used a sample of 38 feeders from PG&E’s 

service territory to validate that real-time forecast could improve the day-to-day operation of PG&E’s system. Next, a 

broader near real-time implementation (task 2) of the analytics used in task 1 was conducted, with the key differences in 

scope and scale presented in Table 1. For task 2, a real-time environment was set up, using roughly 20% of PG&E’s 

service territory. As SmartMeterTM data was reported with a 24 hour delay at midnight every day into the database used 

for this project, the forecast provided data for the day before and the current day to fill this gap.  
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Table 1: EPIC 2.07 Scope Comparison – Task 1 and Task 2 

Scope Component Task 1 Task 2 

Overall Focus Achievable Forecasting Precision of 
Analytics 

Integration for Test Deployment 

Demonstration Area 38 Feeder Sample Two complete Area of Responsibility 
(AOR) regions – approx. 676 feeders 
from 188 substations, and 1.6 million 
Service Delivery Points (SDP)  

Topological Constraints As-Built Topology As-Switched Prevailing Topology 

Integration with Enterprise 
applications 

No System Integration Near Real-Time integration with 
other Enterprise applications 

User Interaction UI Demo Only PG&E Login Access to Deployed 
Software Platform 

 

For both tasks 1&2, a SDP-Level Forecast Model using SmartMeterTM data and using a proprietary peer model for 

customers without SmartMeterTM was built. Similarly, a SCADA forecast model was built using mainly data from SCADA, 

where SCADA data was available. Then, a bottom-up forecast model was developed using data from the SmartMeterTM, 

GIS, weather data, and power factor estimates and a top-down forecast model was produced for non-SCADA 

distribution nodes calibrated by the SCADA model forecasts. Finally, a reconciled model was created to determine which 

of the two previous models provided the best forecast, based on the data available at the time of the analysis. Figure 1 

summarizes this description. 

Figure 1: Simplified Depiction of Partial Topology for a Substation with Three Feeders 

 

Additional details of the scope and approach for the two tasks can be found in Sections 3 and 4.  
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1.3 Key Accomplishments 

The following were the project’s key accomplishments: 

 Successfully built a platform to ingest and process AMI, SCADA, weather, PV generation, and topological data in 

real time, at a scale never before implemented at PG&E 

 Produced hourly load forecasts from 2 days in the past to cover latency in receiving SmartMeterTM data, to 

seven days in the future for all distribution device classes of interest and individual customer meters in two of 

the eight AOR regions within PG&E’s service territory in under 4 hours 

 Developed a reconciled forecasting method that leveraged both bottom-up kWh converted to amps per phase 

and top-down forecasts using SCADA data 

 Integrated as-switched topology into forecasts 

 Produced stability and confidence models for distribution node forecasts 

1.4 Key Takeaways 

Top-Down/Bottom-Up Reconciled Forecast Accuracy 

The project team compared the forecasted mean amps per phase to actual amps per phase from SCADA meters to 

assess the accuracy of the forecasts deployed in the project. The team used 317 SCADA nodes for validation, which were 

screened to ensure that input data of sufficient quality was available to generate the forecasts. The reconciled forecasts, 

which can be produced at any energized distribution node, had a median absolute percent error (MdAPE) of 32% across 

all hours in the validation sample1 in task 2. This means that half of the forecasts across all validation nodes and all hours 

of the day in the seven day evaluation period were within 32% of the target. As for within-node accuracy, half of the 

validation nodes had a 28% MdAPE or less, and half had higher than 28% MdAPE.  

SCADA Model Forecast Accuracy 

In practice, devices with SCADA instrumentation will have the data history from the corresponding meters available to 

better train the forecast models. These SCADA forecasts had an overall MAPE of 6.7%, varying according to the hour of 

the day and device type being forecasted.  

Outsourcing Model Development 

It should not be assumed that external vendors with experience in data science will be able to seamlessly process and 

apply operational PG&E data in complex analytical projects such as this without significant support from PG&E subject 

matter experts. Extensive collaboration was required to assist the vendor in processing the various input data needed 

for the load forecasting models. Also, working vendors that employ proprietary forecasting models can limit visibility 

and in turn make it more difficult to assist them in troubleshooting issues and improving on their methods. 

                                                           
1
 The validation sample was a set of SCADA nodes whose readings passed a data quality screening, to alleviate concern of the 

percent errors being influenced by data quality issues present in the SCADA amps readings. 
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Forecast Stability and Confidence Analysis  

Neither the SCADA nor reconciled forecasts were biased significantly from the actual amps per phase. Overall, 22% of 

the reconciled estimates were 50% or more below the actual amps per phase, and 14% were 50% or more above the 

actual amps per phase. Only 0.2% of SCADA forecasts were underestimates by 50% or more and 4.4% were 

overestimates by 50% or more. The confidence models correctly flagged these large forecast errors 80% of the time for 

SCADA models and 85% of the time for the reconciled models. These flags could alert End Users to make more 

conservative assumptions of the loading than what the forecasts show in those instances. 

Analysis of Systematic Error in Load Forecasts 

The analysis of deviations between bottom-up aggregations of historical actual AMI meter kWh converted to amps per 

phase with measured amps per phase at SCADA nodes showed that there was a very similar error distribution in the 

amps per phase using SDP-level kWh actuals as with SDP-level kWh forecasts, used in the aggregations. This finding 

suggests that if a more accurate method was used for converting kWh to amps per phase at a target node, the forecast 

error could potentially be reduced significantly. 

1.5 Challenges and Resolutions 

The main challenges in developing this project’s load forecasting capabilities were to make up for the limitations in data 

available at all the distribution nodes, and to ingest and utilize input data for the forecasting analytics. These challenges 

and resolutions are summarized in Table 2 and Table 3. 

Table 2: Forecast Process Methodological Challenges and Resolutions 

Forecast Process  Challenge Project Team Resolution 

Coverage of nodes in 
the distribution grid 
without metering 
infrastructure 

Partial coverage of distribution nodes 
with SCADA meters and line sensors 

Aggregated forecasted SmartMeterTM data 
corresponding with the target distribution node. 

Coverage of nodes in 
the distribution grid 
without metering 
infrastructure 

About 4% of SDPs without 
SmartMetersTM 

Peer models were assigned and persisted for all 
SDPs for use in forecasting, when an AMI based 
model could not be produced for various reasons. 

Utilization of most 
recent model input 
data available 

Two-day delay in availability of 
SmartMeterTM data  

Calibrated SmartMeterTM based forecasts with low-
latency SCADA data from metered assets on the 
same feeder as the target distribution node. 

Unit Conversion  SDP level data in kWh and target node 
forecasts needed in amps  

Converted aggregated kWh to amps per phase, 
accounting for the target node phase configuration 
and operating voltage (see 4.1.1.1.). 

Accounting for 
switching 

The SDPs contributing to the loading at 
a given distribution node changes 
according to switching by distribution 
operators 

Integrated Distribution Management System 
switching state into the SDP aggregation 
methodology. Historic switch positions stored for 
all switches. 

Topology and network 
changes 

New assets (meters / grid devices) are 
installed, removed / exchanged.  

Updates to device master data and topology 
regularly captured and integrated with the existing 
data 
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Table 3: Data challenges and Resolutions 

Data Class Data Challenge Project Team Resolution 

Topology  No timestamp for abnormal/ 
normal switch transitions 

Transition timestamps were assigned from metadata from first 
subsequent abnormal state file without record for the 
switchable device. 

SDP-level time 
series data 

Incomplete monthly kWh data 
available for non-AMI SDPs 

Peer models required the average daily kWh for calibration. For 
non-AMI SDPs the team received a limited transfer of this data, 
so mean average daily kWh by customer class was used as a 
proxy for this peer model input. 

SDP-level time 
series data 

PV forecast and actual data 
refresh data inconsistent 

Forecasted net demand (kWh delivered minus kWh received), 
implicitly accounting for PV generation instead of explicitly with 
forecasted and actual PV. 

Loading data at 
asset nodes in 
distribution 
topology 

Changing tag name conventions The project team rewrote the SCADA/Topology mapping code 
as needed. 

Loading data at 
asset nodes in 
distribution 
topology 

Irregular transfers for ingestion The vendor team worked with PG&E Information Technology 
(IT) to reinstate transfer schedule or restart the data ingester 
when irregular file formats are encountered. 

Loading data at 
asset nodes in 
distribution 
topology 

Data quality The project team applied a trigger for distribution node 
forecasts excluding SCADA data of insufficient quality for use in 
this project, when common issues impacting forecast quality 
were identified. 

Multiple Changing data exchange 
protocols – resulting from 
lessons learned through course 
of work 

The project team rewrote data ingest pipelines as needed.  

Data corrections Correcting erroneous time series 
data (meter reads) in No SQL 
database  

Delete and re-insert approach was used instead of updating the 
wrong records. This turned out to be a more accurate option, 
though time consuming. 

Data volume 
growth 

Exponential increase in data 
volume resulted in data handling 
issues 

Pre-aggregated data was stored only for frequently accessed 
data points and only for a specified time period. Forecasts only 
at SDP level were persisted. Most of the aggregations were 
calculated real time 
 

Large volume of 
PV forecast data  

Large volume of PV forecast 
data consumed a major portion 
of compute and storage 
resources 

Less granular PV data (daily forecasts) were used instead of 
hour a head, six hour a head forecasts 
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1.6 Recommendations 

The following recommendations should be considered by any organization that endeavors to implement real-time load 

forecasting capabilities similar to those developed within this project: 

 Test forecasting methods on smaller sets of data before deploying capabilities at scale 

 Ensure that the data platform has sufficient processing power to support computationally-intensive forecasting 

methods, and ensure that the ability to scale up is addressed in platform development 

 Deploy data completeness and quality flag tracking analytics in parallel to forecasts to provide deeper insight to 

potential issues with forecast accuracy and available data to produce the forecasts 

 Focus on the quality of the underlying models & assumptions for the aggregation of actual kWh converted to 

mean amps per phase. The accuracy of the aggregation is impacted by assumptions for power factor and system 

losses, as well as the load flow model. Distribution engineers and data scientists would need to work together to 

address these issues and ensure strong forecasting models are employed.  

 Perform robust validation to compare performance across the different forecasting methods 

 Follow standard data science techniques to ensure that the classification tree model of the reconciled forecast 

method is robust to prevent overfitting 

1.7 Conclusions 

While challenges remain for improving the analytics deployed in this project for use by End Users, this project 

demonstrated that on-demand level forecasts for loading at distribution nodes are feasible. Load forecasting is not an 

easy task, but having multiple models to use across various levels of the grid helps to compensate for the potential gaps 

of each model. Overall, the results produced by the load forecasting models were inconclusive. Also, the use of median 

to assess forecast accuracy can hide the impact of outliers.  

On average, the forecasts were on target, as indicted by the minimal bias observed. One of the key takeaways was that 

systematic errors – i.e. unrelated to the stochastic models driving the forecasts – can be significant drivers of forecast 

errors, and represent a logical next step for anyone attempting to drive down forecast errors. All the models built into 

this project assumed a set power factor per customer class, no system losses, no power flow analysis, and did not take 

into consideration any reactive power supplied by capacitor banks. These limitations of this approach would require 

expertise from both distribution engineers and data scientists to improve upon. Additionally, data quality flags for 

SCADA data measurement readings and bolstering the tracking of inbound model input data would further improve the 

forecast accuracy. 

A challenge with working with an external vendor is that it can limit the visibility into their methods, especially when 

their methods are proprietary. This can make it difficult to support them to improve their models. Moreover, without a 

full understanding of the models, building in additional functionality is challenging, and this makes a utility dependent 

upon the external vendor for future enhancements. 
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2 Introduction 

This report documents the EPIC 2.07 – Real Time Load Forecast project achievements, highlights key learnings from the 

project that have industry-wide value, and identifies future opportunities for PG&E to leverage this project. 

The California Public Utilities Commission (CPUC) passed two decisions that established the basis for this demonstration 

program. The CPUC initially issued Decision (D.) 11-12-035, Decision Establishing Interim Research, Development and 

Demonstrations and Renewables Program Funding Level2, which established the EPIC on December 15, 2011. 

Subsequently, on May 24, 2012, the CPUC issued D. 12-05-037, Phase 2 Decision Establishing Purposes and Governance 

for Electric Program Investment Charge and Establishing Funding Collections for 2013-20203, which authorized funding in 

the areas of applied research and development, technology demonstration and deployment (TD&D), and market 

facilitation. In this later decision, CPUC defined TD&D as “the installation and operation of pre-commercial technologies 

or strategies at a scale sufficiently large and in conditions sufficiently reflective of anticipated actual operating 

environments to enable appraisal of the operational and performance characteristics and the financial risks associated 

with a given technology.”4  

The decision also required the EPIC Program Administrators5 to submit Triennial Investment Plans to cover three-year 

funding cycles for 2012-2014, 2015-2017, and 2018-2020. On November 1, 2012, in A.12-11-003, PG&E filed its first 

triennial EPIC Application with the CPUC, requesting $49,328,000 including funding for 26 Technology Demonstration 

and Deployment Projects. On November 14, 2013, in D.13-11-025, the CPUC approved PG&E’s EPIC plan, including 

$49,328,000 for this program category. On May 1, 2014, PG&E filed its second triennial investment plan for the period of 

2015-2017 in the EPIC 2 Application (Application (A.) 14-05-003). CPUC approved this plan in D.15-04-020 on April 15, 

2015, including $51,080,200 for 31 TD&D projects.6 

Pursuant to PG&E’s approved 2015-2017 EPIC triennial plan, PG&E initiated, planned and implemented the following 

project: EPIC 2.07 – Real Time Load Forecast. Through the annual reporting process, PG&E kept CPUC staff and 

stakeholders informed on the progress of the project. The following is PG&E’s final report on this project.  

                                                           
2
 http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/156050.PDF. 

3
 http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/167664.PDF. 

4
 D.12-05-037 pg. 37. 

5
 PG&E, San Diego Gas & Electric Company (SDG&E), Southern California Edison Company (SCE), and the California Energy 

Commission (CEC). 
6
 In the EPIC 2 Plan Application (A.14-05-003), PG&E originally proposed 30 projects. Per CPUC D.15-04-020 to include an 

assessment of the use and impact of electric vehicle energy flow capabilities, Project 2.03 was split into two projects, resulting 
in a total of 31 projects. 

http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/156050.PDF
http://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/167664.PDF
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3 Project Summary 

This section summarizes the industry gap that the project addresses, as well as the project’s objectives, the scope of 

work, and major tasks, milestones, and their corresponding deliverables. 

3.1 Issues Addressed 

Currently, the loading information available to distribution operators, distribution engineers, and planners (collectively 

referred to as “End Users”) is either seasonal peak device level amp data or historical AMI raw aggregations converted to 

device and line level amp values in non-SCADA areas. With limited deployment of SCADA sensors on the distribution grid 

and limited real-time loading data, it is difficult for End Users to make detailed circuit-level decisions with confidence. 

This challenge is compounded with the need to preemptively plan outages, requiring a forecasted view of future loading 

characteristics that even a robust deployment of SCADA sensors cannot provide. Improving load forecasting will improve 

the following use cases: 

 Scheduled Outages: Distribution operators (DO) and distribution operations engineers (DOE) must develop 

switch plans to re-route power serving end customers that is currently flowing through assets which need to be 

de-energized temporarily for maintenance or repairs. In some circumstances the switch plans can become 

complex if there is not enough capacity through direct tie-points on the circuit, thereby requiring cascading load 

transfers.  

 Emergency Load Transfer: Unscheduled outages from damaged distribution assets result in loss of power to end 

customers whose load is served by power flowing through the damaged asset. DOs are responsible for safely 

restoring power as quickly as possible by re-routing load through nodes with capacity to accommodate the 

incremental load from the customers experiencing the outage. 

 Capacity Planning: System planning engineers estimate loading throughout the distribution grid based on a 

single peak loading value recorded at the bank level, often by an onsite reading of an electro-mechanical meter, 

when no SCADA exists, and determine which downstream assets are most at risk of failure due to overloading, 

requiring equipment repairs or replacement.  

3.2 Project Objectives 

The objective of this project was to configure analytics using Smart Meter, SCADA, PV, GIS, Weather, and other data to 

deliver better real-time and forecasted loading information for End Users and assist them in making more informed 

decisions in their day-to-day activities. 

3.3 Scope of Work and Project Tasks 

3.3.1 Task 1: Retrospective Forecast Demonstration 

Objectives: Demonstrate the achievable precision for short-term (real-time to 7 days ahead) forecasts at blind spots 

(nodes in the distribution topology without SCADA or line sensors) in PG&E’s distribution system at topological nodes 

without sensors collecting loading time series data.  

Outputs: The following project task outputs are documented in the Task 1 results of Section 4 of this report. 
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3.3.1.1 Bottom-Up Forecast Accuracy Validation 

Bottom-up load forecasts were applied using models of end customer SmartMeterTM data, weather data, GIS data, and 

power factor estimates. Volt-amps were converted to average amps per phase by dividing the volt-amps by the high-

side operating voltage at the target node. Since validation was against instantaneous root mean square (RMS) reads at 

the top of each hour, bottom-up estimates consisted of averages of the kWh-derived estimates from that matching 

timestamp and the following hour, since kWh timestamps are on the hour end. 

3.3.1.2 SCADA Model Forecast Accuracy Validation 

SCADA models of phase-level amps were configured for use in reconciled top-down/bottom-up forecasts.  

3.3.1.3 Reconciled Top-Down/Bottom-Up Forecast Accuracy Validation 

The reconciliation process was designed to be a systematic means of determining conditions where the bottom-up 

forecasting approach should be used over the top-down, or vice versa, or whether a combination of the two would be 

expected to outperform either one on its own. A machine learning classification tree model was used for estimating 

which of the models would give the lowest forecast error, given several candidate input variables: 

 Count of end customer Service Point IDs comprising the load at the target node 

 Number of SCADA nodes on the feeder corresponding with the target node 

 Historical forecast precision at nodes on the feeder  

 Coefficient of variation of the top-down estimates 

3.3.1.4 Sensitivity Analysis 

The forecasts produced in this task used actual weather data, rather than forecasts. The sensitivity analysis quantified 

the expected change to forecast accuracy statistics with respect to weather forecast error variance.  

3.3.1.5 Stability and Confidence Analysis 

The project team quantified the frequency of forecasts with error of 50% or more. This was termed a “stability analysis”. 

Subsequently, the project team applied a confidence model where it modeled the accuracy as a function of forecast 

conditions, in an effort to provide the End User a flag that would indicate an elevated risk for the forecast error being 

above some threshold (50% was used in this task).  

3.3.2 Task 2: Limited Scale Live Prospective Forecast Demonstration 

Objectives: Demonstrate the feasibility of deploying the Task 1 analytics in an on-demand tool for PG&E End Users, 

covering two AORs, comprising approximately 30% of PG&E’s electricity customer population.  

Outputs: The following project task outputs are documented in the Task 2 results of Section 4 of this report. 

3.3.2.1 Bottom-Up Actual kWh Converted to Mean Amps Per Phase Accuracy Validation 

To validate the process of aggregating SDP level net demand to distribution node levels, this analysis was conducted 

with actual AMI meter readings, rather than forecast models at the customer level. This provides insight into the 

maximum achievable precision for a bottom-up forecast, since there is no demand or weather forecast error, only 

unaccounted non-AMI SDPs. 
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3.3.2.2 Top-Down/Bottom-Up Reconciled Forecast Accuracy Validation 

This validation was conducted to compare distribution node forecast accuracy, without the benefit of SCADA metrology, 

from a live setting in Task 2 to the retrospective controlled setting in Task 1.  

3.3.2.3 SCADA Model Forecast Accuracy Validation 

A validation of SCADA models, using historical SCADA meter readings for training, was conducted to provide insight into 

the expected forecast precision by hour and lead time (up to 7 days into the future) at SCADA nodes, which are active on 

many important switchable or otherwise critical assets to monitor throughout the distribution grid. 

3.3.2.4 SDP Model Forecast Accuracy Validation 

While not expected to be of primary interest to DOs, the accuracy of SDP forecasts was provided for stakeholders at 

PG&E who have a need to forecast SDP level net demand. 

3.3.2.5 Stability and Confidence Analysis 

As with Task 1, the stability and confidence models were summarized to inform End Users on the risks of forecast errors 

above 50%. 
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4 Project Activities, Results, and Findings 

This project consisted of two sequential tasks demonstrating forecasting analytics within distribution topologies. The 

following table summarizes the differences in scope of the two tasks. 

Table 4: EPIC 2.07 Scope Comparison – Task 1 and Task 2 

Scope Component Task 1 Task 2 

Overall Focus Achievable Forecasting Precision of 
Analytics 

Integration for Test Deployment 

Demonstration Area 38 Feeder Sample Two complete AOR regions – approx. 
676 feeders from 188 substations 
and 1.6 million SDPs (about 20% of 
PG&E’s territory) 

Topological Constraints As-Built Topology As-Switched Prevailing Topology 

Integration with Enterprise 
applications  

No System Integration Near Real-Time integration with 
other Enterprise applications 

User Interaction UI Demo Only PG&E Login Access to Deployed 
Software Platform 

 

 Overall Focus:  

o Task 1 demonstrated the achievable precision for short-term (real-time to 7 days ahead) forecasts at 

blind spots in PG&E’s distribution system at topological nodes without sensors collecting loading time 

series data.  

o Task 2 demonstrated the feasibility of applying the Task 1 analytics as an on-demand tool for PG&E staff. 

 Demonstration Area: 

o Task 1 analytics were applied to 38 feeders selected for the project. 

o Task 2 expanded to cover the distribution system in two AORs. 

 Topological Constraints: 

o Task 1 analytics were configured to the as-built topology for the 38 feeders. The as-built topology 

accounts for the possible paths of energized assets in the distribution grid. Actual energized paths are 

specified from the as-built topology by applying the positions of switches from open to closed. 

Therefore, the as-built topology includes redundant options for routing power when certain assets must 

be de-energized for performing maintenance, or in the case of an outage.  

o Task 2 analytics were applied to the prevailing as-switched topology, utilizing an ongoing stream of data 

identifying switches currently in a temporary or normal configuration, denoting the switches being open 

or closed at a given time.  

 Integration:  

o Task 1 analytics were applied to a batch of data sets in one-time delivery. All forecasts were produced 

retrospectively, using actual weather and distributed PV generation data. 

o Task 2 analytics were applied to PG&E data dynamically, supporting user-specified on-demand forecasts 

for both past and future date spans, using forecasted weather data.  
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 User Interface (UI) Integration 

o Task 1 analytics precision results were summarized in report and slide deck format only 

o Task 2 analytics results are available to users both in the UI visualization and for download to a comma 

separated value (CSV) file, with corresponding precision summarized in this report. 

4.1 Task 1: Retrospective Forecast Demonstration 

4.1.1 Technical Development and Methods 

4.1.1.1 Unit Conversion 

The unit of measurement for the forecasts at nodes upstream of SDPs was amps per phase. SCADA meters installed on 

assets in nodes in the distribution system measured phase-specific amps and volts. Amps were of primary interest to 

End Users since it is used for load transfer calculation. Forecasting loading by phase would have been preferable to End 

Users from feedback provided to the project team, however data for mapping SDP loading to each phase was not 

available, so mean amps across the phases was the target metric for the forecasts in the project. 

Since SDP level consumption was measured in kWh, conversion was first necessary to go from kWh to kVA, and then 

from kVA to amps per phase, accounting for the operating voltage and phase configuration at the target node. Power 

factors were assumed to be static at 0.95 for residential customers and 0.85 for non-residential customers. The 

following formula was used for converting bottom-up kWh to amps per phase at the target node in Task 1: 

𝐴𝑚𝑝𝑠 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 =
∑ 𝑘𝑉𝐴𝑇𝑎𝑟𝑔𝑒𝑡

√3 ×𝑘𝑉𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑇𝑎𝑟𝑔𝑒𝑡
  

∑ 𝑘𝑉𝐴𝑇𝑎𝑟𝑔𝑒𝑡 was the bottom-up kWh converted to kVA by dividing the kWh by the power factor by customer type. 

𝑘𝑉𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑇𝑎𝑟𝑔𝑒𝑡 was the operating voltage at the target distribution node where the forecast was made. 

4.1.1.2 Forecasting Methodology 

The forecasting approach consisted of five components: 

1. SDP-Level Forecast Models. The project team fit models for net delivered hourly kWh for every SDP with 

SmartMeterTM data. This included SDPs with 15-minute readings, which were aggregated to hourly for 

consistency. For non-SmartMeterTM SDPs, peer models were estimated to account for their contribution to 

loading. The SDP models accounted for calendar effects and weather sensitivity. 

2. SCADA Load Models. Models fit directly from historical amps per phase data were fit for each SCADA node, to 

forecast future loading at the SCADA nodes, and to be provided as input to the top-down forecasts described 

below. The SCADA models also accounted for weather sensitivity and calendar effects. 

3. Bottom-Up Aggregations of Forecasted kWh Converted to Amps per Phase. Bottom-up distribution node level 

forecasts consisted of aggregations of the SDP-level forecasts downstream of the target node of interest, using 

the topology data provided. The bottom-up aggregations are dependent on SDP-level forecasts, the results of 

which are detailed in aggregate in Section 4.1.3.1 and at the granular SDP level in Section 4.2.3.4. 

4. Top-Down Forecasts. Top-Down Forecasts for the target distribution node were produced by calibrating SCADA 

model forecasts from other nodes within the feeder with SCADA instrumentation or line sensors. For some 

feeders in the 38 validation feeder set, SCADA data was not available or was not of sufficient quality for 
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producing a top-down forecast. Top-Down forecasts utilize SCADA model forecasts, the results of which are 

detailed in Section 4.1.3.2 and Section 4.2.3.3. 

5. Reconciled Top-Down/Bottom-Up Forecasts. For distribution nodes where top-down and bottom-up forecasts 

could both be produced, reconciled models predicted the probability of the top-down or bottom-up forecasts 

having the lower APE, given various tracking conditions, trained on forecasts for SCADA nodes with historical 

top-down and bottom-up forecasts. Reconciled forecasts used this model to weight the top-down and bottom-

up forecasts according to those probabilities.  

Figure 2 shows a simplified topology with node-level expansions down to the SDP-level for one of the three feeders for a 

substation, with one of the feeders containing a target node for forecasting (in red). Forecasts were generated using a 

bottom-up approach aggregating the forecasted load for the downstream SDPs and a top-down approach using the 

readings from another node on the feeder with SCADA instrumentation (in green). The reconciled forecast is a weighted 

average of the top-down and bottom-up forecasts using the probability outputs of the model. 

Figure 2: Simplified Depiction of Partial Topology for a Substation with Three Feeders 

 

The weights in the weighted average come from a classification tree model configured for determining the 

circumstances when the bottom-up or top-down model performed best, applied to the target node. This reconciled 

model was then applied to point to the final forecast estimate for a given node. The accuracy of the forecasts was 

evaluated on SCADA nodes where actual amperage was recorded, and sensitivity of that accuracy with respect to 

temperature forecast inaccuracy was quantified in a sensitivity analysis.  

Bottom-up load forecasts were applied using models of end customer SmartMeterTM data, weather data, topology data, 

and power factor estimates. Volt-amps were converted to average amps per phase by dividing the volt-amps by the 

high-side operating voltage at the target node. Since validation was against instantaneous RMS reads at the top of each 

hour, bottom-up estimates consisted of averages of the kWh-derived estimates from that matching timestamp and the 

following hour, since kWh timestamps are on the hour end. 
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Top-down forecasts were applied using SCADA measurements of current by phase, weather data, SmartMeterTM data, 

and topology data. While expected to be useful more narrowly than bottom-up forecasts because of the scarcity of 

SCADA nodes on the test set of 38 feeders, top-down models were tested for whether it would outperform bottom-up 

forecasts in certain conditions due to the one-hour latency of SCADA data compared with 48-hour latency for 

SmartMeterTM data.  

The reconciliation process was designed to be a systematic means of determining conditions where the bottom-up 

forecasting approach should be used over the top-down, or vice versa, or whether a combination of the two would be 

expected to outperform either one on its own.  

A machine learning classification tree model for estimating which of the three models would give the lowest forecast 

error was fit, given several candidate input variables: 

 Count of end customer SPIDs comprising the load at the target node 

 Number of SCADA nodes on the feeder corresponding with the target node 

 Historical forecast precision at nodes on the feeder  

 Coefficient of variation of the top-down estimates 

To validate the forecasts, the average amps per phase from hold-out SCADA nodes as “truth” were used for validation. 

As noted in section 2.3.2, this limited the number of top-down forecasts which could be validated.  

The validation process considered three criteria: 

1. Accuracy. How large are the forecast errors, on a percentage basis? 

2. Stability. How often are forecast percent errors very large? 

3. Confidence. Can large forecast percent errors be predicted? How often do large errors not get flagged? 

Accuracy. The accuracy metrics were mean absolute percent error (MAPE), which is commonly used in forecasting 

applications, as well as median absolute percent error (MdAPE), which is useful for showing a measure of center of APE 

in the presence of large outliers which may drive up the mean. For each hourly interval, the deviation between the 

forecasts and the actual load given in the target SCADA validation nodes was computed. The absolute percent error 

(APE) was then computed by taking the absolute value of the deviation and dividing by the actual value. The MAPE 

and/or MdAPE was then computed by averaging over the APE values. These error metrics can be computed for a vast 

number of subsets of the conditions for which forecasts are generated, e.g., for a specific hour of the day or for 

temperatures within a specified range, so long there were observations supporting it. 

Stability. Stability of the forecasts was analyzed by computing the proportion of forecasts outside of a threshold of 

absolute percent error. Through stakeholder interviews it was made clear that operator trust in the forecasts could be 

compromised by large forecast errors, even when relatively infrequent compared to more moderate errors, so the 

stability assessment quantified the likelihood of those errors occurring.    

Confidence. With the understanding that large, infrequent forecast errors for loading may have a disproportionately 

large impact on operators in their switch plans, a model was developed for predicting the error of the forecasts based on 

tracking metrics on the inputs to those forecasts. The output of this model could be a companion confidence-indicator 
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flag for the load forecasts themselves, which could inform operators to use the load forecast with caution or defer to 

more conservative backup options such as the seasonal peak load estimates.  

4.1.1.3 Data Summary 

The Table 5 provides a summary of the various data elements used in the project. Overall, there were adequate data 

provided to implement this project’s forecasting approach.  

Table 5: Summary of Key Metrics for Critical Data Elements to Task 1 

Data Element Measure  Value Project Team Comments 

Topology Sample set of feeders for the 
EPIC 2.07 Project 

38 Breakdown by area: Diablo (2), Fresno (25), 
San Jose (9), Sonoma (2) 

SmartMeterTM readings Meters on the 38 EPIC 2.07 
feeders with interval data 

79,496 
 

Missing data (2% of the meters) did not hold 
us back on the project, but complete data 
would increase forecast accuracy in future 
phases 

SCADA readings 
extracted from PI 

Nodes with amps for all 
phases on set of 38 feeders 
used in EPIC 2.07 project 

52 18 of the 38 EPIC 2.07 feeders had one or 
more of these nodes with SCADA 
instrumentation.  
Only seven of the nodes provided data of 
sufficient quality for this project’s 
forecasting, and were thus used in 
validation. 

Bank-Level MW and 
Power Factor data 

Feeders with Bank Level 
Power Factor Data 

11 Did not use in this project since too high-
level for aggregations to distribution nodes. 
Instead used assumed power factor by 
customer class. 

Line Sensor Data Distribution nodes 
accounted for in CSV files of 
interval line sensor data 

15 Line sensor data contains phase-level amps, 
useful in top-down models and validation. 
Not all files were sufficiently populated for 
use in the project. 

Weather Data (Hourly 
weather actuals) 

Weather stations with 
sufficient historical data for 
retrospective load forecasts 

25 Nearly complete data for all weather 
stations across the service territory was 
available 

PV Generation (Meter 
Level, Hourly Intervals) 

Meters with PV Generation 
interval data matched to the 
demonstration feeder set 
topology 

6,652 83 Meters for which PV_Gen data are 
available have not been linked to a 
transformer in the topology.  
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4.1.2 Challenges 

4.1.2.1 Data Challenges 

The following data challenges listed in Table 6 were encountered over the course of the project.  

Table 6: Data Challenges Encountered on Task 1 

Data Issue Impacted 
Project Tasks 

Resolution 
Status 

Notes 

Irregular SCADA load 
patterns 

Top-Down 
Load Forecasts, 
Validation 

No Several SCADA nodes had loading time series with apparent 
unaccounted switching or linear patterns which were 
unsuitable for extrapolation to other nodes. Such nodes 
were insufficient for use in this project and excluded from 
the validation task.  

Zero-valued 
SmartMeterTM kWh 
readings 

Bottom-up 
load forecasts 

Yes Zeros were excluded from the kWh models. It was 
determined they occur when there is a meter swap, 
outage, and when net generation occurs from PV system. 

Missing Map of Non-
SmartMeterTM SPIDs to 
Topology 

Bottom-up 
load forecasts 

No Count of non-SmartMetersTM by district suggests likely very 
low percentage shares of non-SmartMetersTM, so this had 
minimal impact on this project, but in future work will need 
this mapping to facilitate peer interval load modeling. 

 

4.1.2.2 Technical Implementation Issues 

Table 7 summarizes the technical issues encountered in the project. 

Table 7: Task 1 Technical Implementation Issues for Task 1 

Technical 
Implementation Issue 

Impacted 
Project Tasks 

Notes 

Conversion of kWh to 
Amps 

Bottom-Up 
Load Forecasts 

For validation nodes, converted by dividing aggregate kWh 
by high-side operating voltage, then dividing by square root 
of 3. There may be special wiring configurations that would 
require different formula in the future. 

Static Topology All Forecasting 
Tasks 

For operational deployment, will need real-time topology 
to ensure accurate forecasts can be made. Refreshed 
SCADA models may be required for changes in topology, 
and bottom-up aggregations will depend on accurate 
configuration. 

Forecasting 
Instantaneous 
Readings 

All Forecasting 
Tasks 

Bottom-up forecasts will be “smoother” than instantaneous 
readings because of the demand aggregation to hourly 
energy. Higher frequency SCADA readings than one per 
hour may improve precision. 

Load Imbalance Across 
Phases 

All Forecasting 
Tasks 

Average amps per phase can mask severe loading issues for 
imbalanced lines. In future work, should seek to account for 
imbalances in models, using available data and engineering 
principles. 
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4.1.3 Results and Observations 

This section contains the results of the analyses described for Task 1 in Section 3.  

4.1.3.1 Bottom-Up Forecast Accuracy Validation 

Bottom-up load forecasts were applied using models of end customer SmartMeterTM data, weather data, topology data, 

and power factor estimates. Volt-amps were converted to average amps per phase by dividing the volt-amps by the 

high-side operating voltage at the target node. Since validation was against instantaneous root mean square (RMS) 

reads at the top of each hour, the bottom-up estimates consisted of averages of the kWh-derived estimates from that 

matching timestamp and the following hour, since kWh timestamps are on the hour end. 

The bottom-up load estimates for target nodes were first generated in terms of kWh, and were then converted to 

average amps per phase. This section presents the precision at distribution nodes for both the kWh forecasts and those 

forecasts converted to amps and compared to actual spot amp readings at the validation SCADA nodes. The two sets of 

estimates are presented separately because the kWh converted amps will have incremental error due to  

 Technical losses not being accounted for currently 

 Instantaneous SCADA readings not directly corresponding with hourly energy 

 Possible differences in the conversion formula due to special cases of line wiring configurations  

The figure below shows the MAPE by hour for kWh forecasts across the validation nodes, in blue, and the corresponding 

MAPE for those bottom-up forecasts converted to average amps per phase (in red).  

 The Bottom-Up Amps Per Phase Forecast MAPE in red measure the precision of the aggregated forecasted kWh 

from SDPs at the validation SCADA nodes, compared to the SCADA amps per phase from the SCADA meters at 

those nodes. 

 The bottom-Up kWh Forecast MAPE is a measure of the precision of forecasted aggregated kWh compared to 

actual aggregated kWh, where both the forecast and actuals are aggregated up from SDP SmartMetersTM. 

As shown on Figure 3, the kWh MAPE ranges from 6% at hour ending 7 to approximately 12% in hour ending 17. Across 

all hours, the average kWh MAPE for the kWh forecasts was 8%. For the reasons listed above, the bottom-up MAPE for 

amps per phase is higher, ranging from 13% to 23% across the hours of the day. 
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Figure 3: Bottom-Up MAPE for kWh and Amps Per Phase Forecasts at Validation Nodes, by Hour 

 

 

4.1.3.2 SCADA Model Forecast Accuracy Validation 

SCADA models of phase-level amps were configured for use in reconciled top-down/bottom-up forecasts.  

Across all SCADA nodes on the 38 feeders, the median MAPE is summarized in Table 8 by forecast lead time across the 

columns, and measure type down the rows. The Ex Ante lead time column refers to any larger lead time than seven 

days. Measure types RMS_CURRENT_1, RMS_CURRENT_2, and RMS_CURRENT_3 are associated with line sensor data, 

which only contains current by phase. SCADA meters measured both current and voltage per phase. Voltage forecast 

precision is also provided. Voltage is far more stable over time than current, and accordingly the MAPE is significantly 

less. The row with measure type labeled “Amps A+B+C” is the mean amps across the phases, which was ultimately the 

benchmark for forecast validation.  
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Table 8: Median MAPE Across All SCADA Nodes in the 38 Feeder Set by Measure Type 

Measure Type  

Hour Ahead  

(%) 

1-Day Ahead 

(%) 

2-Day Ahead 

(%) 

3-Day Ahead 

(%) 

7-Day Ahead 

(%)  

Ex Ante 

(%) 

AMPS_A 5.2 11.5 12.5 13.1 14.7 17.8 

AMPS_B 5.8 13.4 15.4 16.1 16.4 20.3 

AMPS_C 5.2 11.5 12.1 12.4 13.4 16.9 

RMS_CURRENT_1 3.9 8.8 9.0 9.0 9.2 9.3 

RMS_CURRENT_2 3.9 8.9 9.0 9.1 9.4 9.7 

RMS_CURRENT_3 3.7 9.1 9.2 9.3 9.5 9.8 

Amps A+B+C 4.1 10.5 11.1 11.6 12.9 15.0 

VOLTS_A 0.2 0.4 0.4 0.4 0.4 0.4 

VOLTS_B 0.2 0.4 0.4 0.4 0.4 0.4 

VOLTS_C 0.2 0.4 0.4 0.4 0.4 0.4 

 

After conducting a data quality review of the SCADA node interval data series, several SCADA nodes were flagged as not 

being appropriate for use in this project, due to having a significant share of potentially anomalous or unexplained 

readings or having dramatic structural shifts in the time series typical of switching activity, but not accounted for in the 

abnormal states switch records database. Notably, several of these series had very strong precision because the 

anomalous load pattern was highly predictable by the regression models. The Table 9 summarizes the SCADA forecast 

precision for the seven nodes that were used in the forecast validation task, after removing the remaining nodes with 

unexplained anomalous load patterns. Other than being 1% higher for hour ahead forecasts, the MAPE for the average 

amps across the phases (AMPS A+B+C) was unchanged or slightly lower in the final set of validation nodes for the 

different lead times.  
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Table 9: Median MAPE Across Validation SCADA Nodes in the 38 Feeder Set by Measure Type 

Measure Type  

Hour Ahead 

(%) 

1-Day Ahead 

(%) 

2-Day Ahead 

(%) 

3-Day Ahead 

(%) 

7-Day Ahead 

(%) 

Ex Ante 

(%) 

AMPS_A 5.4 8.0 9.0 9.5 10.2 12.9 

AMPS_B 7.9 9.8 10.6 11.0 11.7 13.7 

AMPS_C 5.8 8.4 9.1 9.4 10.0 12.6 

RMS_CURRENT_1 8.0 16.2 16.4 16.5 16.9 18.4 

RMS_CURRENT_2 10.1 20.5 20.6 20.8 21.1 22.5 

RMS_CURRENT_3 7.6 15.2 15.3 15.4 15.8 17.1 

Amps A+B+C 5.2 10.6 11.2 11.6 12.3 14.8 

VOLTS_A 0.2 0.4 0.4 0.4 0.4 0.5 

VOLTS_B 0.2 0.4 0.4 0.4 0.4 0.5 

VOLTS_C 0.2 0.4 0.4 0.4 0.5 0.5 

 

4.1.3.3 Reconciled Top-Down/Bottom-Up Forecast Accuracy Validation 

The reconciliation process was designed to be a systematic means of determining conditions where the bottom-up 

forecasting approach should be used over the top-down, or vice versa, or whether a combination of the two would be 

expected to outperform either one on its own. A machine learning classification tree model was used for estimating 

which of the models (either top-down or bottom-up) would give the lowest forecast error, given several candidate input 

variables: 

 Count of end customer SPDs comprising the load at the target node 

 Number of SCADA nodes on the feeder corresponding with the target node 

 Historical forecast precision at nodes on the feeder 

 Coefficient of variation of the top-down estimates 

 

Accuracy 

The top-down/bottom-up reconciled forecast median absolute percent error (MdAPE) ranged from 9.6% for hour-ahead 

forecasts to 10.6% for 7-day ahead forecasts, as shown in the blue curve in the Figure 4. The corresponding range of the 

mean was 13.1 – 13.9%, corresponding with the orange series in the figure.  

The project team compared the MAPE results to two-day lagged bottom-up kWH aggregations converted to mean amps 

per phase from SmartMetersTM downstream of the validation nodes, to evaluate the value of the forecasts compared 
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with non-forecasted 2-day old converted kWh aggregations, which is the current latency of the data provided to End 

Users. Two days is the typical latency of SmartMeterTM data transmission to the central storage repository at the utility. 

By comparison, the MAPE for the two-day lag aggregated SmartMeterTM based estimate for loading (without a forecast 

model) ranges from 29 – 36%, shown in the grey curve below. 

Figure 4: Comparison of the Current Model with Reconciled Forecasts by Lead Time – Validation Nodes 

 

Both the median and mean APE are given in the figure above to illustrate that the error distribution is skewed, with a 

small share of very high errors causing the mean to be higher than the median. In this distribution for hour-ahead 

forecast APE, for example 90% of the forecasts had an APE less than 28%, 95% had an APE less than 35%, and 99% had 

an APE less than 59%. 

For the full set of validation nodes, which includes two nodes where only bottom-up forecasts could be made due to an 

insufficient number of SCADA nodes on the feeder, the MAPE was 16% for hour-ahead and day-ahead, and was steady 

at 17% for lead times of two days through seven days.  

4.1.3.4 Stability and Confidence Analysis 

In response to an inquiry by a PG&E subject matter expert, the project team quantified the frequency of forecasts with 

error of 50% or more. This was termed a “stability analysis”. Subsequently, the project team applied a confidence model 

where it modeled the accuracy as a function of forecast conditions, in an effort to provide the End User a flag that would 

indicate an elevated risk for the forecast error being above some threshold (50% was used in this task).  
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To measure the forecast stability, the percent of the forecasts with absolute percent error over 50% was computed, and 

compared it to the corresponding percentage for the backward-looking aggregated SmartMeterTM estimate. While the 

threshold of 50% was chosen arbitrarily, it gives an indication of the likelihood of a forecast being significantly off target, 

which in some use cases could have disproportionately severe consequences. At all lead times, fewer than 2% of the 

reconciled forecasts exceeded 50% error. By comparison, 18-20% of the backward-looking aggregated SmartMeterTM 

estimates exceeded 50% error. The stability estimates are summarized in the Figure 5. 

Figure 5: Stability Comparison: Reconciled Forecasts vs. Aggregated SmartMeter
TM

 with 2-Day Lag: Percent of Forecasts with APE at Least 50% 

 

To minimize occurrences of DOs or DOEs unknowingly using load forecasts with large errors in their switch plans, the 

project team developed a model for flagging forecasts which have inputs associated with larger load forecast errors. The 

confidence metric used in this evaluation is the percent of forecasts with absolute percent error at least 50% which the 

model failed to flag, and the percent of overall forecasts which were flagged.  

The Figure 6 gives the frequency of a forecast having at least a 25% or 50% error and not being flagged by the EPIC 2.07 

confidence model. Increasing the percent of overall forecasts which are flagged will result in fewer un-flagged large 

forecasts.  
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Figure 6: Confidence Illustration for Reconciled Forecast Model: Percent of Reconciled Forecasts with APE Above the Threshold, and Not Flagged 

 

The similarity in the percentages for lead times of one day or more is due to those forecasts being driven mostly by the 

bottom-up load forecasts, whereas the top-down models influence the reconciled forecast more at the hour-ahead lead 

time. The value of the top-down model degrades with respect to the bottom-up model as the lead time increases. 

4.1.3.5 Sensitivity Analysis 

The forecasts produced in this task used actual weather data, rather than forecasts. The sensitivity analysis quantified 

the expected change to forecast accuracy statistics with respect to weather forecast error variance.  

The table below summarizes the expected precision degradation for a typical distribution node due to temperature 

forecast error for lead times up to seven days, with the forecast error impact given in the right-most column of the table. 

Impacts were computed using historical mean absolute error (MAE) for temperature forecasts provided by PG&E’s 

meteorology department (second column of the table), which were converted to standard deviation (third column of 

the Table 10) assuming forecast errors were equally likely to be positive or negative for each of these lead times, and 

follow a normal distribution. 

Table 10: Expected Load Forecast Degradation Due to Temperature Forecast Error for a Typical Distribution Node 

Forecast Lead Time 
Temperature Forecast Error 

MAE 
Temperature Forecast 

Error Standard Deviation 
Expected Load Forecast 
MAPE Increase Due to 

Weather Forecast Error 

Same Day 1.6 2.01 1.7% 

1 Day Ahead 2.0 2.51 2.5% 

2 Days Ahead 2.3 2.88 3.1% 

3 Days Ahead 2.6 3.26 3.8% 

7 Days Ahead 3.9 4.89 7.0% 
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This MAPE impact relationship was developed by comparing bottom-up forecasts for kWh to actual bottom-up kWh for 

the validation nodes. Bottom-up estimates were used because they are applicable for all distribution nodes, whereas 

top-down estimates are only used when there is sufficient SCADA instrumentation on the feeder containing the target 

node. Additionally, this offered a more conservative estimate of the potential accuracy degradation because top-down 

estimates are less weather sensitive because they incorporate recent trends in loading, whereas the bottom-up 

estimates did not. The sensitivity was computed on the aggregate kWh forecasts rather than load per phase, since the 

loading conversion was deterministic – any additional error resulting after the conversion was considered systematic 

(and correctable, with additional engineering data), rather than stochastic.  

The combined error distribution for bottom up forecasts is given below  

𝐸𝑖~𝑁(0, ∑ 𝜎𝑗
2 + 𝛾2(∑ 𝛽𝑗𝑖)

𝑗

2

)

𝑗

 

𝐸𝑖  is the error for distribution node i 

N(a,b) is the normal distribution function with mean a and variance b. Here the mean is zero and the variance is 

∑ 𝜎𝑗
2 + 𝛾2(∑ 𝛽𝑗𝑖)𝑗

2
𝑗  

𝜎𝑗
2 is the variance for the load forecast error for SDPj contributing to the loading on node i 

𝛾2 is the variance for the temperature forecast error, which is largely driven by the lead time for the forecast 

𝛽𝑗𝑖is the regression coefficient for temperature associated with SDP j for node i 

Figure 7 contains the increase in the MAPE for the load forecasts at the validation nodes with respect to the standard 

deviation of the temperature forecast error. For a standard deviation of 5, hourly temperature forecasts would be within 

5 degrees of the actual temperatures (in either direction) about 68% of the time, and within 10 degrees about 95% of 

the time. To estimate the increase in MAPE for a forecast lead time, PG&E should estimate the corresponding standard 

deviation of the hourly temperature forecast errors (as was done in the table above), and locate the point on the curve 

with that value along the x-axis.  

To convert MAE to standard deviation under the 2-sided error representation, the following formula is applied, 

assuming absolute error follows a half-normal distribution.  

𝜎 =
√𝜋(𝑀𝐴𝐸)

√2
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Figure 7: Effect of the Temperature on the Forecast Error 

 

The expected month-specific MAPE degradation estimates are given in Table 11 below. The MAE, and corresponding 
MAPE impact, of weather forecasts is seasonal with a peak in June and trough between November and January, 
depending on the lead time. The shading in Table 11 corresponds with the MAPE impact, with yellow being the lowest 
and red being the highest. 

Table 11: Monthly MAPE degradation estimates due to temperature forecast error (%) 

Month Day-Of 1-Day Ahead 
2-Days 
Ahead 

3-Days 
Ahead 

7-Days 
Ahead 

Jan 1.3 2.1 2.3 2.9 4.0 

Feb 1.7 2.3 2.9 3.3 4.3 

Mar 1.7 2.5 2.9 3.3 5.7 

Apr 1.7 2.3 2.9 4.0 8.7 

May 1.7 2.9 3.6 4.3 8.2 

Jun 2.3 3.1 4.7 5.9 11.1 

Jul 1.9 2.7 3.6 4.3 7.7 

Aug 1.7 2.3 2.9 3.8 6.7 

Sep 2.1 2.9 4.0 5.5 10.0 

Oct 1.7 2.5 2.7 3.1 5.5 

Nov 1.3 1.7 2.3 2.5 5.0 

Dec 1.5 2.3 2.1 2.5 5.5 
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4.2 Task 2: Limited Scale Live Prospective Forecast Demonstration 

4.2.1 Technical Development and Methods 

This section describes the technical procedures used to produce and validate the distribution node forecasts specific to 

Task 2. The general methodology is described in Section 4.1.1, Technical Developments and Methods.  

4.2.1.1 Data Ingestion and Computational Architecture 

The computational platform was deployed to three PG&E servers composed of 32 CPU cores and 64GB of Random 

Access Memory each, and used in Task 2 to maintain synchronization with multiple operational PG&E data systems, 

as well as scale and run the analytics developed and described in Task 1. Two of the three servers were used for 

processing analytic scripts and one of the three servers was used for data ingestion and general platform orchestration. 

A number of analytic scripts were developed or configured for use in Task 2. Several large scale analytic scripts utilized 

an API to the Apache Spark framework to accomplish parallel execution of the analytic across each worker node in the 

vendor platform cluster. Table 12 details the analytic scripts deployed to the vendor platform in fulfillment of system 

specifications. 

Table 12: Analytic Process Execution Frequency 

Analytic Type Description Execution Frequency 

SDP Training Script Training of hourly load forecasting model for each individual 
SDP. 

Weekly 

SDP Forecasting Script Hourly forecasts across a 7-day forecast horizon, along with 
a 2-day “back-cast” for each individual SDP. 

Nightly 

SCADA Forecasting Script Training and forecasting of hourly amps for any SCADA 
device at or downstream of a provided device node. This is 
an on-demand API because of the impact of dynamic 
switching events and the value/cost ratio of storing these 
forecasts for every device versus those of interest to 
operational decisions. 

On-demand 

Reconciliation Script Combines bottom-up SDP and top-down SCADA forecasts to 
produce a single forecast for a selected device node and its 
downstream devices. This is an on-demand API because of 
the impact of dynamic switching events and the value/cost 
ratio of storing these forecasts for every device versus those 
of interest to operational decisions. 

On-demand 

Peer Model Assignment Script Assignment of each SDP to a peer class used as a proxy 
model when an SDP is not AMI-enabled or there was 
insufficient data to compute a forecast. 

Monthly 
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4.2.1.2 Unit Conversion 

As described in Section 4.1.1.1, this project involved conversion from kWh to kVA and ultimately to amps per phase at 

the target distribution nodes. With Task 2 involving significantly more feeders than in Task 1, the project team received 

guidance, summarized in Table 13, from PG&E distribution engineers for the correct conversion formula under various 

phase designation scenarios. 

Table 13: Mean Amps Per Phase Formula by Phase Designation at Target Node 

Phase Designation Mean Amps per Phase Formula 
 

abc kVAh/(kV Operating voltage*√3) 

ab kVAh/ kV Operating voltage 

bc kVAh/ kV Operating voltage 

ac kVAh/ kV Operating voltage 

a kVAh/( kV Operating voltage /√3) 

b kVAh/( kV Operating voltage /√3) 

c kVAh/( kV Operating voltage /√3) 

 

The Phase Designation column in Table 13 provides the different phase representations found in the distribution system 

nodes. Designation “abc” is for a 3-phase wiring configuration, with the phases labeled “a”, “b”, and “c”. Two-phase 

(e.g., “bc”) and single phase (e.g., “a”) wiring was also found. Operating voltage refers to the normal voltage at the 

target distribution node for the forecast.  

The conversion from kWH to Amps assumes 1) set power factor per customer class 2) no system losses 3) no power flow 

analysis which then does not take into consideration any reactive power supplied by capacitor banks. These are the 

limitations of this strategy. 

4.2.1.3 Forecasting Under As-Switched Topology 

To account for the as-switched topology in the forecasts, switch transition data was used along with the as-built 

Distribution Management System (DMS) topology tables to determine which SDPs were energized through the target 

node being forecasted at a given time. The key data sources for this were: 

 DMS LINE Table. Provides as-built parent/child relationships for each distribution node. Since this is as-built, it 

contains redundant relationships that would be filtered out depending on the switch states at a given time. For 

example, an ID may have two upstream parent IDs, but only one of them would represent an energized line 

segment at a given time.  

 Temporary State Files. Each node ID that is in a temporary (abnormal) state is included in a separate record in 

files provided every five minutes. The current status is always opposite to the normal status field in the record in 

this file. The current status field provides the phase-specific switch position value, with a “0” always indicating 

open, and “111” indicating the switch is closed for each of the three phases, for example. Since phase-level 

connections from node to node were not provided, parent-child segment between nodes were considered 

energized if the current status included a “1”. For example, “010” would be considered a closed switch.  
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A timestamp field identifies when the switch position transitioned from its normal to temporary state. There 

was no explicit timestamp for an ID transitioning back from the temporary to normal state, so the timestamp 

embedded in the 5-minute frequency file that first did not include an ID that had been in a temporary state was 

used as a proxy for the temporary-to-normal state transition timestamp.  

 Normal Status Bulk File. This file provided the normal switch state position for all switches, for reference when a 

switch did not go into an abnormal state at any time during the data history.  

4.2.1.4 Data Challenges 

Linking SCADA Data to GIS Topology Data. To properly associate SCADA data with its corresponding node in the 

distribution topology, a mapping convention was needed. Three different mapping conventions were needed to 

correctly process SCADA data covering multiple device types. Through the course of the project, SCADA tag name 

conventions changed a few times, which required reconfiguring the mapping functions within the vendor platform data 

pipeline services. 

Maintaining Temporal Switch States Across Time. Due to forecasting analytics training on historical data across 

significant historical periods of time (greater than 1 month), historical switch states had to be maintained in addition to 

the current switch state. The temporary switch sates file from DMS (every 15 minutes) includes switches in an abnormal 

state position. The normal state of all the switches is received from GIS. Both the files need to be merged to get the 

point in time position of all the switches. The timestamp of a return to normalcy can be inferred as at some point 

between two file deliveries.  

4.2.1.5 Forecast Validation 

As in Task 1, the forecast validation process considered three criteria: Accuracy, Stability, and Confidence. Details on 

these validation metrics can be found in Section 4.1.1.1, with details specific to Task 2 below. 

SDP Accuracy. The accuracy metric for SDPs in Task 2 was symmetric absolute percent error (sAPE), which is defined as 

follows: 

𝑠𝐴𝑃𝐸 =
|𝐹𝑡 − 𝐴𝑡|

|𝐴𝑡| + |𝐹𝑡|
2

 

Where 𝐹𝑡  𝑎𝑛𝑑 𝐴𝑡  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡 

Whereas the calculation of absolute percent error (APE) uses only the actual quantity in its denominator, the calculation 

of sAPE is different in that it leverages both the actual quantity and the forecasted quantity. This is beneficial when true 

values are very small and error measures such as MAPE can be dramatically inflated. This often lends itself to a 

misleading sense of error magnitude. Using mean or median measures of sAPE, however, facilitate a nearly identical 

interpretation to those which are based on APE, while partially addressing the issue of the measure being undefined 

when the actual reading is close to zero, as can happen with SDP kWh readings. Using this notation, the mean sAPE 

would be sMAPE and median sAPE would be sMdAPE7.  

                                                           
7
 sMAPE and sMdAPE will be undefined when both the forecast and actual are zero. 
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Stability. Stability was only quantified for distribution node forecasts and not SDP forecasts. 

Confidence. Same process used for Task 1, described in Section 4.1.1.1, was used for Task 2. 

4.2.1.6 Data Summary 

The Table 14 provides a summary of the various data elements used in Task 2 of the project. The platform data ingest 

processors were adapted to PG&E file formats for each of the following data sources described in Table 14. Each data 

source was delivered in a delimited file format, parsed, and stored in the vendor platform for subsequent analytics. The 

platform bulk loaded 2 years of historical data for the 2-AOR scope of Task 2. 

Table 14: Summary of Critical Data Elements to the EPIC 2.07 Task 2 Project 

Data Class Data Elements  Coverage Refresh Frequency for Ingest 
to Platform 

Topology  DMS tables: LINE, NODE, 
LOAD, CAPACITOR, DEVICE 

 SDP to transformer maps. 

 Abnormal switch state 
indicators 

 System-wide normal state 
switch positions 

Full PG&E Distribution 
System, except normal state 
switch positions and SDP to 
transformer maps which are 
limited to the 2 AORs (5 & 6) 
 
676 feeders from 188 
substations in AOR 5 & 6 

 Abnormal Switch state 
indicators updated every 
5 minutes 

 SDP to transformer maps 
refreshed monthly 

SDP-level time 
series data 

 15 and 60 minute kWh 
delivered and received 
from AMI meters  

 SDP-level PV generation 
forecasts and actuals 

 1,539,194 Unique SDPs 

 65,896 SDPs Without 
SmartMeterTM Data 

Daily, at an average lag of 
2 days 

Loading data 
at asset nodes 
in distribution 
topology 

 SCADA meter - current by 
phase 

 Line sensor data – RMS 
current 

2,344 SCADA/Line Sensor  
SCADA meter count varies by 
feeder (1 to 10+) 

Daily, at an average lag of 
6 hours 

Weather Data 
(Hourly 
weather 
actuals) 

Weather stations with 
sufficient historical data for 
retrospective load forecasts 

Hourly actual and forecast 
temperatures from 160 PG&E 
stations throughout the 
system  

Daily 

 

4.2.2 Challenges 

4.2.2.1 Data Challenges 

Considerable efforts were made to scale up the small-scale backcasting analytical project in Task 1 to support forecasts 

for 2 AORs at an on-demand basis in Task 2. Configuration of analytics from a static environment to a dynamic data 

setting was an intensive process, as was the back end and user interface engineering configuration of the data feeds and 

storage to support the scheduled and on-demand analytics. Various issues forced unexpected delays to get the 

processes online, hence the limited seasonal validation in this report. 
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The following data challenges listed in the table below were encountered and addressed to enable the forecast 

demonstration in Task 2.  

Table 15: Data Challenges Encountered on Task 2 of the EPIC 2.07 Project 

Data Class Data Issue Project Team Resolution 

Topology  No timestamp 
for abnormal-
to-normal 
switch 
transitions 

Transition timestamps assigned from metadata from first 
subsequent abnormal state file without record for the 
switchable device. 

SDP-level time series 
data 

65,896 SDPs 
without AMI 
meter data 

Peer models assigned for all SDPs as backup for use in 
forecasting  

SDP-level time series 
data 

Incomplete 
monthly kWh 
data available 
for non-AMI 
SDPs 

Peer models required the average daily kWh for calibration. 
For non-AMI SDPs the team received a limited transfer of 
this data, so mean average daily kWh by customer class 
was used as a proxy for this peer model input. 

SDP-level time series 
data 

PV forecast and 
actual data 
refresh 
inconsistent 

Forecasted net demand (kWh delivered minus kWh 
received), implicitly accounting for PV generation instead of 
explicitly with forecasted and actual PV. 

Loading data at asset 
nodes in distribution 
topology 

Changing tag 
name 
conventions 

Rewrote SCADA/Topology mapping code 

Loading data at asset 
nodes in distribution 
topology 

Irregular 
transfers for 
ingest 

Worked with PG&E IT to reinstate transfer schedule or 
restart data ingester when irregular file formats are 
encountered. 

Loading data at asset 
nodes in distribution 
topology 

Data quality  Apply trigger for reconciled forecast to exclude SCADA 
nodes that did not have sufficient  quality for use in this 
project, when nodes had missing or zero-valued readings  

Multiple Changing data 
exchange 
protocols – 
resulting from 
lessons learned 
through course 
of work 

Rewrote data ingest pipelines multiple times  

 

4.2.2.2 Technical Implementation Challenges 

This project demonstrated the feasibility of distribution node level forecasts generated on-demand using as-switched 

topology data and ongoing feeds of loading data from SDPs and distribution SCADA and line sensor data, and weather 

data. Through this project, the following technical challenges were noted: 
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 Forecast Data tracking. The solution demonstrated in this project requires a number of time series data feeds 

for the forecast model training and estimation processes. The complexity and volume of the key data elements 

was a continual challenge to the project team. A robust tracking system for data would enable proactive 

mitigation of issues which could affect the forecasting process, and maximize the performance of the analytics. 

 IT Resourcing. Several ongoing analytics jobs in this project were extremely taxing on the system provisioned, 

and often competed with each other for resources, requiring intensive monitoring and schedule coordination by 

the project team and remedial actions when components of the system went down, or costing in terms of 

turnaround time. Appropriate resource sizing in support of similar future deployments which plan for several 

simultaneous intensive analytics would facilitate consistency in the execution of key analytical processes.  

4.2.3 Results and Observations 

The findings documented in this section provide insight to the question of whether the precision measured on a handful 

of validation nodes in Task 1 are maintained in a broader implementation across the 2 AORs in Task 2, accounting for the 

as-switched topology. 

To validate forecasts, mean amps per phase at SCADA nodes were treated as “truth.” The project team selected 

validation SCADA nodes which did not have missing data, constant-valued readings, or linear interpolations between 

readings, as they were assumed to be linked to the meter reading algorithm and storage of the readings, rather than the 

actual load being measured. 

In Figure 8, the time-series plot of actual mean amps per phase illustrates linear interpolations used by PG&E’s SCADA 

data management application. Because of this interpolation, this particular SCADA node was not used for validation. 

Figure 8: Example SCADA node with linear interpolations for actual amps in two spans within the displayed range 

 

To narrow the scope of evaluation, the project team selected 300 SCADA nodes which had fewer than ten hourly 

intervals flagged for being part of one of an apparent straight-line linear interpolation (as shown in the figure above) 

over a seven-day forecasting evaluation period starting June 4, 2018. This sample provided a sufficient number of SCADA 

nodes to validate accuracy with suitable precision.8 The on-demand forecasting platform was not online early enough to 

cover multiple forecasting seasons. A seven-day evaluation period was chosen so that the forecast lead time could be 

evaluated (currently individual forecasts can go up to a seven-day lead time). 

                                                           
8
 See figure on p. 15 showing relative precision of samples at various confidence levels for an example load research example. 

https://aeic.org/wp-content/uploads/2013/07/AMI_MDMWhitePaperFinal2.pdf. 

https://aeic.org/wp-content/uploads/2013/07/AMI_MDMWhitePaperFinal2.pdf
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4.2.3.1 Bottom-Up Actual kWh Converted to Mean Amps per Phase Accuracy Validation 

Prior to validating the reconciled forecast, the project team evaluated the accuracy of the bottom-up conversion process 

of kWh to mean amps per phase, using actual kWh from SmartMetersTM. The reconciled forecasting accuracy is 

dependent on several factors apart from the forecasts themselves, including: 

 Accuracy of distribution topology linkages from the target node and its corresponding downstream SDPs 

 Accuracy of assumed power factors for converting kWh at the SDP level to kVA for aggregation 

 Accuracy of the operating voltage and phase designation at the target node, and conversion formula from kVA 

to mean amps per phase 

 Alignment between loading for timestamps from SCADA measurement extracts from data management system 

and hour-ending kWh (i.e., which timestamp(s) in the SCADA data extracts would reflect loading from kWh in 

AMI extracts?)  

 Accuracy and completeness of switching records 

 

While it was beyond the scope of this project to validate these systematic dependencies, the project team did compare 

aggregations of the bottom-up actual kWh to actual amps per phase from SCADA meters at validation nodes. The 

discrepancies suggest that an engineering review of the assumptions listed above, and other factors may be beneficial, 

and bolster the achievable accuracy of the forecasting analytics deployed.  

 

Figure 9 represents the distribution of the APEs for the bottom-up aggregation of actual kWh by hour for all the 

validation nodes for the seven-day span starting June 4, 2018. 
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Figure 9: Boxplots of Bottom-Up APEs (Where Actual Historical kWh Are Converted to Amps), by Hour, for All Validation Nodes and for the 7 Day 

Span Starting June 4, 2018 

 
 

This distribution shows the median (in black) and the mean (in red). The magnitude observed suggests that the 

achievable accuracy for forecasts derived from bottom-up aggregations of kWh is systematically limited, but may be 

improved after resolving potential issues noted in the bullets above.  

4.2.3.2 Top-Down/Bottom-Up Reconciled Forecast Accuracy Validation 

The reconciled forecasts were produced using the method described in Task 1 of this report, and configured for the as-

switched live forecasting context. For the reconciled forecast validation, the SCADA data at the target nodes were not 

used in producing the forecasts, rather they were withheld to serve as an evaluation benchmark for “ground truth.” For 

the reconciliation forecast validation, the project team started with the 317 validation nodes, then selected those on 

feeders with two or more validation nodes, since the validation process required one SCADA node to be held out, and 

the top-down forecast feeding into the reconciliation model requires at least one SCADA node forecast. For the resulting 

set of 289 validation nodes, the feeder list was divided in two groups – one for reconciliation model training 

(132 validation nodes) and one for the holdout group (157 validation nodes) for validation.  

Reconciled forecasts were produced for the seven-day forecast starting June 4, 2018 on 289 SCADA nodes, which were 

located on feeders which had at least two SCADA meters. Top-down and bottom-up forecasts were fit for 132 of the 

nodes, with the remaining 157 serving as a holdout validation test sample for the reconciliation model.  
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As with Task 1, a machine learning classification tree model for estimating which of the three models would give the 

lowest forecast error was fit, given several candidate input variables, with the following terms used in the model: 

 Count of end customer SDPs comprising the load at the target node 

 Number of SCADA nodes on the feeder corresponding with the target node 

 Count of end customer SDPs comprising the load at the SCADA nodes on the same feeder as the target node 

 Difference between the estimated power factor for the target node and the power factors from the SDPs 

downstream from the SCADA nodes 

 Proportion of total estimated kWh for the target node from SmartMeterTM based models 

The distribution across the validation nodes is shown in the following figure. The median test node in the validation 

sample had MdAPE of 28%, shown in the dashed green line in the histogram.  

Figure 10: Distribution of Reconciled Forecast Median Absolute Percent Error – by Validation Node 

 

In Figure 11 below, the MdAPE for the reconciled forecast was 32% across all hours in the validation sample. By hour, 

the MdAPE peaks in midday, coincident with solar irradiance and temperature in early afternoon. The reconciled 

forecast and the top-down forecast were nearly identical across the hours of the day, with the bottom-up MdAPE 

higher, at 37% overall. 



 

 
EPIC Final Report – 2.07 Real Time Loading Data for 

Distribution Operations and Planning 
 

  35 

Figure 11: Reconciled Forecast Median Absolute Percent Error by Hour and Forecast Type on Validation Nodes 

 

However, in Figure 12 below, the same data is used as in Figure 11 but the mean is displayed instead of the median. 

Now, the top-down forecast appears to perform worse than the reconciled forecast and that of the bottom-up forecast. 

This shows that there is still work required to obtain a robust solution. It does reveal that the bottom-up model is more 

robust than the top-down model, probably due to the impact of SCADA data limitations on top-down model 

performance. 
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Figure 12: Reconciled Forecast Mean of Absolute Percent Error by Hour and Forecast Type on Validation Nodes 

 

 

The Figure 13 shows the upward trend in mean of the APEs by lead time hour (this time normalized by starting hour 

through the seven day forecast horizon, termed the ‘lead time hour’), while maintaining the inter-day seasonality shown 

in Figure 12.  
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Figure 13: Forecast Mean Absolute Percent Error by Lead Hours and Forecast Type 

 

4.2.3.3 SCADA Model Forecast Accuracy Validation 

Supervisory Control and Data Acquisition (SCADA) meters are most commonly installed at line recloser or circuit breaker 

nodes, and provide near real-time loading information for DOs and other End Users managing the distribution system. 

While useful, the SCADA meter data collected does not include forecasts for future loading. The forecasting analytics 

from this project can provide End Users insight into the loading on the devices with SCADA meters up to seven days in 

the future.  

 

While the reconciled forecast methodology of which results are presented in the previous section can be produced for 

any distribution node that the topology connects with downstream SDPs (including SCADA nodes), The SCADA model 

forecasts presented in this section are trained on the actual historical data collected directly from the SCADA meters, 

rather than a bottom-up approach. Because of the direct connection to historical load data to train on, the SCADA 

models are typically more accurate than their bottom-up or reconciled forecast counterparts, but are applicable only to 

the specific node the model is trained on. 

 

In Task 2 the project team deployed SCADA model analytics to nodes in the two AORs. To evaluate the accuracy of the 

SCADA data models, the project team analyzed the MdAPE for the validation nodes. A preliminary analysis showed that 

there was not a significant difference in the hourly MdAPE profile between forecasts generated on the two dates, so the 
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7 day forecasts starting June 4 forecasts are included in the summary plots below. Across all nodes and device types, the 

MdAPE was 6.7%.  

The Figure 14 below shows the MdAPE by hour and device type where the SCADA meter is installed. The MdAPE curve is 

much smoother and lower magnitude for Dynamic Protective Device Reclosers (reclosers) and SUB Interrupting Device 

Circuit Breakers (circuit breakers) likely because there were relatively fewer Fault Indicator Line Sensors (line sensors). 

Additionally, the line sensor readings may have had unidentified quality issues that impacted model performance and 

could have been installed on nodes with more volatile load. The MdAPE peaks in the middle of the day, coinciding with 

the period of peak solar irradiance and temperature, likely because solar irradiance was not used in the SCADA models 

deployed.  

 
Figure 14: SCADA Model Forecast Median Absolute Percent Error by Hour and Device Type 

 
 

The Figure 15 shows the MdAPE by lead time, to illustrate the level of degradation in the forecasts further in the future. 

There is an increase in the MdAPE for the circuit breaker and reclosers after lead hour 120, with no apparent trend in 

the first 120 hours, or in the Line Sensor time series throughout.  
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Figure 15: SCADA Model Forecast MdAPE by Lead Time and Device Type 

 

4.2.3.4 SDP Model Forecast Accuracy Validation 

This section describes the predictive performance of the SDP-level load forecasting models9 driven by SmartMeterTM 

data flowing to the project team in 1 hour or 15 minute intervals. The SmartMeterTM time series data was labeled 

according to its channel, with separate channels for delivered kWh and received kWh. Received kWh represented net 

energy flowing from the customer to the distribution grid, due to PV systems or another distributed energy resource 

(DER). The SDP modeling objective was to predict the net delivered energy at an hourly level (15 minute data was 

aggregated to hourly for consistency across the SDPs), with net delivered energy equal to delivered minus received kWh.  

Net hourly delivered kWh precision estimates were captured for a randomly selected sample of 50,000 customers across 

both May and June of 2018. Details of the distribution of this sample are as follows: 

 42,973 Residential, 6,993 Non-Residential 

 3,576 SDPs with net meters for PV installations 

 

The Figure 16 and Figure 17 depict predictive performance in terms of symmetric MAPE by hour and by customer type 

(residential and commercial/industrial) for the months of May and June, respectively. The customer type field10 maps to 

each SDP, with values “Res” (residential), “Com/Ind” (commercial or industrial), and very infrequently compared to 

these, a street lighting indicator, which was not included in the analysis. Both figures show that commercial/industrial 

customers had a lower sMAPE than residential customers overall, and particularly so between midday business hours.  

                                                           
9
 A SDP in this analysis corresponds with a unique service point identifier (SP_ID) value. 

10
 The customer type field was sourced from the monthly periodic master meter data refresh to the project team. 
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Figure 16: SDP Level Symmetric MAPE by Hour and Sector – May 

 

Figure 17: SDP level Symmetric MAPE by Hour and Sector - June 
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Figure 18 and Figure 19 depict sMAPE by hour and by whether or not the SDP has a PV installation, as indicated from the 

presence of a net energy meter. There is a late morning and an evening spike in sMAPE for PV SDPs coincident with 

hours most likely to have net demand from the grid close to zero. With both actual and estimated kWh close to zero, 

sMAPE is inflated because the denominator approaches zero.  

 
Figure 18: SDP Level Symmetric MAPE by Hour and PV Indicator - May 
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Figure 19: SDP Level Symmetric MAPE by Hour and PV Indicator - June 

 
 

Figure 20 provides additional context for the dual spikes in MAPE for the PV customers, with the actual and forecasted 

load overlaying on the sMAPE plot (the axis scale corresponds with sMAPE rather than kWh). The purple sMAPE curve 

corresponds with the aggregate actual and forecast curves in green and red, for illustrative purposes. As noted above, 

the peak in the sMAPE occurs when the mean net kWh approaches zero.  



 

 
EPIC Final Report – 2.07 Real Time Loading Data for 

Distribution Operations and Planning 
 

  43 

Figure 20: SDP-Level Symmetric MAPE by Hour with Load Shape for Forecast and Actual for Context 

 

To measure the impact in the sMAPE of longer lead time temperature forecasts (which tend to have more error than 

shorter lead time forecasts), the project team examined sMAPE by lead time for the 168 hours following the forecast 

generation on June 4, 2018. Figure 21 shows no apparent upward trend in MAPE across the lead hours.  

 
Figure 21: SDP Level Symmetric MAPE as a Function of Forecast Lead Time by Sector 
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4.2.3.5 Stability and Confidence Analysis 

By PG&E subject matter expert request, the project team computed the overall proportion of forecasts with error 

50% or higher produced by bottom-up, reconciliation and SCADA methods at SCADA nodes where the validation was 

conducted. By PG&E subject matter expert request, the project team computed the overall proportion of forecasts with 

error 50% or higher produced by bottom-up, reconciliation and SCADA forecasts at SCADA nodes where the validation 

was conducted. SCADA models require time series at the node being estimated, whereas bottom-up and reconciliation 

models can be applied at any distribution node. SCADA model requires time series at the node being estimated, whereas 

bottom-up and reconciliation models can be applied at any distribution node. Table 16 summarizes the mean ratio of 

forecast to actual load for each model type, as well as the probability (Pr) of the ratio being less than 0.5 (i.e., forecast 

lower than the actual by 50%) and greater than 1.5 (i.e., forecast higher than the actual by 50%).  

Table 16: Stability of Forecasts Using SCADA Models vs. Reconciliation Models 

Model Type 
Median {

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙
} Pr {

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙
} < 0.5 Pr {

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙
} > 1.5 

Bottom-Up 0.975 .254 .112 

Reconciled 1.009 .222 .141 

SCADA 1.028 .005 .044 

 

The median ratio of bottom-up model forecasts to actual amps per phase was 0.975, indicating a slight underestimate. 

The median ratio for reconciled estimates was 1.009, less than one percent above the actual on the median. The SCADA 

model ratio was 1.028, 2.8% above the actual on the median, across the nodes and hours in the validation group. 

Approximately 25% of the bottom-up forecasts were less than 50% of the actual amps per phase, and 11% were 50% or 

more above the actual amps per phase value. A slightly lower percentage of the reconciled forecasts (22%) were 50% or 

below the target, and a slightly higher percentage (14%) were 50% or more above target, as compared with the bottom-

up forecasts. Only 0.5% of the SCADA forecasts were less than 50% of the actuals, and 4.4% were at least 150% of the 

actual amps per phase. Only 0.5% of the SCADA forecasts were less than 50% of the actuals, and 4.4% were at least 

150% of the actual amps per phase. 

Figure 22: Likelihood of at Least a 50% Error by Forecast Type shows the stability by model type across the hours of the 

day. The bottom-up and reconciled models have a similar hourly stability profile. The SCADA model stability is flat for the 

50% or less series and has a pronounced peak for the 150% or more series near hour-ending 12-13.  
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Figure 22: Likelihood of at Least a 50% Error by Forecast Type 

 

The confidence model, as with Task 1, was a classification tree model for flagging intervals with absolute percent error 

of 50% or more based on tracking metrics associated with the node being forecasted.  

Tested out of sample, the confidence model correctly flagged reconciled model based forecasts 85% of the time. The 

confidence model correctly flagged reconciled model based forecasts 85% of the time. For SCADA models, the 

confidence model correctly identified 80% of the relatively low number of errors greater than 50% of the actual amps 

per phase. 
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5 Value Proposition 

The purpose of EPIC funding is to support investments in technology demonstration and deployment projects that 

benefit the electricity customers of PG&E, SDG&E, and SCE. EPIC 2.07 has demonstrated that a near real-time load 

forecast was possible.  

The load forecasting analytics developed and configured in this project are for distribution operators, operations 

engineers, capacity planners, and others who are responsible for managing the loading on the PG&E distribution grid on 

a real-time and forward looking basis.  

Unlike existing analytical tools which provide loading estimates from backward-looking analytics based on seasonal 

peaks or lagged energy consumption, these predictive analytics are calibrated to the expected conditions for the time 

the forecast is to be made, using a multitude of attribute and interval data sources.  

Near real-time load forecasts can provide information which will help distribution operators restore power outages 

faster and more safely due to improved understanding of available loading capacity across all nodes in the distribution 

grid, at a lower cost than a significant increase in SCADA installations where blind spots exist currently. Even with full 

SCADA instrumentation, forecast models like those developed in this project would need to be implemented to provide 

visibility beyond real-time to the upcoming seven to ten days. 

5.1 Primary Principles 

The primary principles of EPIC are to invest in technologies and approaches that provide benefits to electric ratepayers 
by promoting greater reliability, lower costs, and increased safety. This EPIC project contributes to these primary 
principles in the following ways:  

 Greater reliability: Providing forecasted load visibility to distribution engineers and operators to allow them to 
manage distribution switching for both planned and unplanned events more quickly and with less switching 
steps.  

 Lower costs: Having accurate predictive load forecasts may reduce the number of switching steps required to 
perform maintenance and restoration and therefore reduce operational costs.  

 Increased safety and/or enhanced environmental sustainability: Having look ahead visibility into dynamic grid 
load conditions will allow operators to better plan for maintenance and enhance operational decision making 
awareness. 

5.2 Secondary Principles 

This EPIC project contributes to the following three secondary principles: societal benefits, GHG emissions reduction, 
economic development; and efficient use of ratepayer funds.  

 Societal benefits: Having a forecasted visibility of the grid may support the operator in restoring power faster as 

well as allow planners to find the best time and conditions for maintenance, thereby impacting fewer 

customers. 

 Efficient use of ratepayer funds: With load forecasts, distribution engineers may optimize the system on a 
shorter time horizon given dynamic loading conditions. Their goal is to maintain reliable power as safe and 
efficiently as possible. 
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5.3 Accomplishments and Recommendations 

5.3.1 Key Accomplishments 

 Successfully built a platform to ingest and process AMI, SCADA, weather, PV generation, and topological data in 

real time, at a scale never before implemented at PG&E 

 Produced hourly load forecasts from 2 days in the past to cover latency in receiving SmartMeterTM data, to 

seven days in the future for all distribution device classes of interest and individual customer meters in two of 

the eight AOR regions within PG&E’s service territory in under 4 hours 

 Developed a reconciled forecasting method that leveraged both bottom-up kWh converted to amps per phase 

and top-down forecasts using SCADA data 

 Integrated as-switched topology into forecasts 

 Produced stability and confidence models for distribution node forecasts 

5.3.2 Key Recommendations 

The following recommendations should be considered by any organization that endeavors to implement real-time load 

forecasting capabilities similar to those developed within this project: 

 Test forecasting methods on smaller sets of data before deploying capabilities at scale 

 Ensure that the data platform has sufficient processing power to support computationally-intensive forecasting 

methods, and ensure that the ability to scale up is addressed in platform development 

 Leverage data completeness and quality flag tracking analytics to screen and prepare data prior to conducting 

any forecasting 

 Deploy data completeness and quality flag tracking analytics in parallel to forecasts to provide insight to 

potential issues with forecast accuracy and available data to produce the forecasts 

 Focus on the quality of the underlying models & assumptions for the aggregation of actual kWh converted to 

mean amps per phase. The accuracy of the aggregation is impacted by assumptions for power factor and system 

losses, as well as the load flow model. Distribution engineers and data scientists would need to work together to 

address these issues and ensure strong forecasting models are employed.  

 Perform robust validation to compare performance across the different forecasting methods 

 Follow standard data science techniques to ensure that the classification tree model of the reconciled forecast 

method is robust to overfitting: 

o Select optimal hyperparameters on training set (needs to include all parts of the model – feature 

selection, dimensionality reduction, the learning model itself) using grid search nested inside a 

cross-validation to find the best hyperparameters for each fold. The best hyperparameters minimize 

model error. 

 Examine the optimal hyperparameters for each fold to ensure model stability 

 Once stability has been established, then record the optimal hyperparameters 

o Use the optimal hyperparameters to train the model on the training set 

 Use cross-fold validation to calculate a robust in-sample error 

o Iterate through the above two steps with different classification algorithms (linear classifiers, decision 

tree, random forest, extreme gradient boosting, etc.) to identify the best performing algorithm 

o Run the final model on the test data and examine final model error 
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5.4 Technology Transfer Plan 

5.4.1 Path to Production 

Near real-time load forecasting capabilities should be part of PG&E’s future Integrated Grid Platform (IGP), where all of 

the input data required for the forecasts is planned to be integrated. The learnings from this project will be used to 

inform the design of the forecasting capabilities in IGP. Improved meter phasing data is planned to be made available 

through deployment of algorithms develop in EPIC 2.14 – Automatically Map Phasing Information, which will improve 

load flow modeling and the aggregation of kWh converted to mean amps per phase. 

5.4.2 Investor-Owned Utilities’ Technology Transfer Plans 

A primary benefit of the EPIC program is the technology and knowledge sharing that occurs both internally within PG&E, 

and across the other Investor-Owned Utilities (IOU), the CEC and the industry. In order to facilitate this knowledge 

sharing, PG&E will share the results of this project in industry workshops and through public reports published on the 

PG&E website. Specifically, below are the information sharing forums where the results and lessons learned from this 

EPIC project were presented or plan to be presented:  

Information Sharing Forums Held: 

2018 DistribuTECH 

San Antonio, Texas | Jan 2018 

2017 Utility Analytics Week 

San Antonio, Texas | Nov 2017 

5.4.3 Adaptability to Other Utilities and Industry  

The following findings of this project are relevant and adaptable to other utilities and the industry:  

Near Real-Time Environment with Ongoing Data Feed Integration 

This project used numerous data sources and ingested a large amount of data in near real-time, including the as-

switched model. T. For optimizing the performance of the application, a combination of relational database for complex 

queries, No SQL database to store time series data and in memory data store for performance improvement was used. 

The architecture is horizontally scalable and can be easily extended to other AORs by provisioning additional servers. 

The learning of this project can be applied to other upcoming projects such as for the implementation of an IGPor 

Distributed Energy Resource Management System (DERMS).  

Real-time Load Forecast 

Based on the data available at other Utilities, some of the models used in this project could be reproduced to build their 

own load forecasting engine. Depending on the data available at each Utility, various options are possible. For example, 

a SCADA forecast with a top-down model may be the only possible option if the utility does not have SmartMeterTM 

installed. This type of work requires both a good understanding of the grid, as well as strong data scientists to create 

models that would be performant. 
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5.5 Data Access 

Upon request, PG&E will provide access to data collected that is consistent with the CPUC's data access requirements for 
EPIC data and results. 
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6 Metrics 

The following metrics were identified for this project and included in PG&E’s EPIC Annual Report as potential metrics to 
measure project benefits at full scale.6 Given the proof of concept nature of this EPIC project, these metrics are 
forward looking. 

D.13-11-025, Attachment 4. List of Proposed Metrics and Potential Areas of 

Measurement (as applicable to a specific project or investment area) 
Reference 

1. Potential energy and cost savings  

b. Total electricity deliveries from grid-connected distributed generation facilities 

More accurate predictive forecast will allow PG&E to operate the grid more reliably and 

have a higher penetration of DER. 

5.2 

3. Economic benefits  

a. Maintain / Reduce operations and maintenance costs 
Due to the increase visibility, less switching steps would be required, lowering the 
operation costs. 

5.1 

5. Safety, Power Quality, and Reliability (Equipment, Electricity System)  

a. Outage number, frequency and duration reductions 

Real-time load forecast allows operating engineers to have higher visibility and act faster 

when outages occur.  

3.1 

c. Forecast accuracy improvement 

Forecast distribution loads on each phase in short-term scenarios allow flexible switching 

that can lead to increased safety, power quality and reliability. 

3.1 

i. Increase in the number of nodes in the power system at monitoring points 

If implemented, the top-down forecast will provide a proxy estimation of the load at 

each distribution nodes. 

3.1 

7. Identification of barriers or issues resolved that prevented widespread deployment 

of technology or strategy 
 

a. Description of the issues, project(s), and the results or outcomes 

Combining all the data sources near real-time to get a better understanding of the grid 
1.5 

b. Increased use of cost-effective digital information and control technology to improve 

reliability, security, and efficiency of the electric grid (PU Code § 8360) 

To get the equivalence of visibility of the distribution grid with other technics, it will take 

more time and cost more.  

5.1 

c. Dynamic optimization of grid operations and resources, including appropriate 

consideration for asset management and utilization of related grid operations and 

resources, with cost-effective full cyber security (PU Code § 8360) 

This project defined the requirement for future IGP applications 

5.2 

8. Effectiveness of information dissemination  

d. Number of information sharing forums held 

Twice 
5.4.1 
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7 Conclusions 

While challenges remain for improving the analytics deployed in this project for use by PG&E End Users, this project 

demonstrated that on-demand level forecasts for loading at distribution nodes are feasible. Load forecasting is not an 

easy task, but having multiple models to use across various levels of the grid helps to compensate for the potential gaps 

of each model. Overall, the results produced by the load forecasting models were inconclusive. Also, the use of median 

to assess forecast accuracy can hide the impact of outliers.  

On average, the forecasts were on target, as indicted by the minimal bias observed. One of the key takeaways was that 

systematic errors – i.e. unrelated to the stochastic models driving the forecasts – can be significant drivers of forecast 

errors, and represent a logical next step for anyone attempting to drive down forecast errors. All the models built into 

this project assumed a set power factor per customer class, no system losses, no power flow analysis, and did not take 

into consideration any reactive power supplied by capacitor banks. These limitations of this approach would require 

expertise from both distribution engineers and data scientists to improve upon. Additionally, data quality flags for 

SCADA data measurement readings and bolstering the tracking of inbound model input data would further improve the 

forecast accuracy. 

A challenge with working with an external vendor is that it can limit the visibility into their methods, especially when 

their methods are proprietary. This can make it difficult to support them to improve their models. Moreover, without a 

full understanding of the models, building in additional functionality is challenging, and this makes a utility dependent 

upon the external vendor for future enhancements. 


