Apprentice Gas Technician Test (AGT)

Preparation Guide

SAMPLE TEST

GAS TECHNICLAN APPRENTICE ENTRANCE EXAM

1. Multiply and simplify.

$$
\frac{3 x^{4}}{4} \cdot \frac{-8 x}{9 x^{3}} \Rightarrow
$$

2. Divide and simplify.
$\frac{12 y}{5 y^{3}} \div$
6
$5 y^{3} \quad 15 y^{5} \Rightarrow$
3. If Rick wants to cut a 10 'stick of conduit into 6 equal lengths, what length must be cut? Express your answer in feet and inches.

$$
10^{\prime} \div 6=
$$

Each piece would measure 1'-8"
4. Subtract and simplify.
$15-2 / 3-3-1 / 2$
5. Simplify

$$
\frac{x^{3} y}{x y^{5}} \Rightarrow
$$

6. Simplify.

$$
\left(\frac{6 y}{9 y^{3}}\right)^{2} \Rightarrow
$$

7. Find the perameter of the shape below:

Parameter $=(+\cdots)$
(Two semicircle + two legs for rectangle)
Parameter $=$
8. What is the tax percentage if an item costs $\$ 14.50$ but you are charged $\$ 15.00$?

$$
\%=\frac{15.00-14.50}{14.50} \quad=
$$

9. Subtract:
$\frac{4 x}{3}-\frac{x}{6}-$
10. Solve for variable and simplify:

$$
3 y-8=16
$$

11. Multiply:

$$
4\left(3 x^{2}-2 x+1\right) \Rightarrow
$$

12. Multiply:

$$
(2 x-1)(3 x+2)=
$$

13. Find the area of the triangle.

14. Find the area for the circle:

15. Using Phythagorean Theorem $\left(c^{2}=a^{2}+b^{2}\right)$ find the length of a,

$$
a=?
$$

16. If a bike wheel is $26^{\prime \prime}$ in diameter, how far will it travel in 10 revolutions?
17. Find the volume of "" pipe that is 10^{\prime} long? I.D. of pipe is $3 / 4$ inches.
18. The two rectangles shown are similar. Find the width of the smaller rectangle.

19. Jim is going to pour a concrete patio. The patio is $15^{\prime} \times 25^{\prime}$. There is a tree in the middle that requires a 4' diameter opening. How many yards of concrete will Jim need if the patio is $6^{\prime \prime}$ thick?

SOLUTIONS TO

AGT PREPARATION GUIDE

SAMPLE TEST

GAS TECHNICIAN APPRENTICE ENTRANCE EXAM

1. Multiply and simplify.

$$
\begin{aligned}
& \frac{3 x^{4}}{4} \cdot \frac{-8 x}{9 x^{3}} \Rightarrow \frac{3 * x^{\wedge} x \wedge x * x}{2 * 2} \cdot \frac{-2 \cdot 2 n 2 * x}{3 * 3 \cdot x * x * x} \\
& -\frac{2 * 2 * 2 \cdot x^{*} \cdot x \cdot x \cdot x * x}{2} \Rightarrow 4+3 *+\frac{2 * x * x}{3} \Rightarrow \frac{-2 x^{2}}{3}
\end{aligned}
$$

2. Divide and simplify.

$$
\begin{aligned}
& \frac{12 y}{5 y^{3}} \div \frac{6}{15 y^{5}} \Rightarrow \frac{2 \cdot 2+3 \cdot y}{5 * y \cdot y \cdot y} \cdot \frac{3+5+y \cdot y \cdot y+y \cdot y}{2 \cdot 3} \Rightarrow \\
& \\
& \frac{2 \cdot 2 \cdot x_{0} \cdot 3 \cdot 5 \cdot b \cdot y^{5} \cdot y \cdot y \cdot y \cdot y}{2 \cdot y \cdot y \cdot y \cdot y \cdot y} \Rightarrow \frac{2+3 \cdot y \cdot y \cdot y}{1} \Rightarrow 6 y^{3}
\end{aligned}
$$

3. If Rick wants to cut a 10 'stick of conduit into 6 equal lengths, what length must be cut? Express your answer in feet and inches.

$$
\begin{aligned}
& 10^{\prime}+6 \Rightarrow \frac{10}{6}=\frac{\not 2 \cdot 5}{\not 26}=\frac{5}{3} \quad \text { of a foot or } 1-2 / 3^{\prime} \\
& 2 / 3 \text { of } 12^{\prime \prime} ? \Rightarrow \frac{24}{3} \Rightarrow \frac{242+2 \cdot z^{\prime}}{2}=8 \text { inches }
\end{aligned}
$$

Each piece would measure 1'-8"
4. Subtract and simplify.

$$
15-2 / 3-3-1 / 2
$$

$$
\frac{152 / 3}{-31 / 2} \quad \Rightarrow-\frac{\frac{47}{3}}{\frac{7}{2}}-\frac{\frac{2}{2}}{\frac{3}{3}} \Rightarrow-\frac{\frac{94}{6}}{\frac{21}{6}}
$$

$$
\frac{94-21}{6} \Rightarrow \frac{73}{6} \quad \Rightarrow \quad 12-1 / 6
$$

5. Simplify

$$
\frac{x^{3} y}{x y^{5}} \Rightarrow \frac{x+x n+y}{x_{0} y+y n y+y+y} \Rightarrow \frac{x x}{y+y+y+y} \quad \Rightarrow \quad \frac{x^{2}}{y^{4}}
$$

6. Simplify.

$$
\begin{aligned}
& \left(\frac{6 y}{9 y^{3}}\right)^{2} \Rightarrow \frac{36 y^{2}}{81 y^{6}} \Rightarrow \frac{2 \cdot 2 \cdot 6 \cdot 5 \cdot 4 \cdot y \cdot y}{2 \cdot p \cdot 3 \cdot 3 \cdot y \cdot y \cdot y+y+y+y} \\
& \frac{2 \cdot 2}{3 \cdot 3 \cdot y+y * y+y} \quad \Rightarrow \frac{4}{9 y^{4}}
\end{aligned}
$$

7. Find the parameter of the shape below:

Parameter $=(+\cdots+)$
(Two semicircle + two legs for rectangle)

$$
\begin{aligned}
& \text { Parameter }=(2 \times \pi r)+\left(2 \times 10^{\prime \prime}\right) \\
& =\left[\left(2 \times \pi\left(\frac{6)^{\prime \prime}}{2}\right]+20^{\prime \prime}=(2 \pi \times 3)+20^{\prime \prime}\right.\right.
\end{aligned}
$$

$$
=38.85^{\prime \prime}
$$

8. What is the tax percentage if an item costs $\$ 14.50$ but you are charged $\$ 15.00$?

$$
\begin{aligned}
& \%=\frac{15.00-14.50}{14.50}=.0345 \\
& .034 .5 \times 100=3.45 \%
\end{aligned}
$$

9. Subtract:

$$
\begin{aligned}
\frac{4 x}{3}-\frac{x}{6}-\frac{\frac{4 x}{3}}{\frac{x}{6}} & \Rightarrow \frac{\frac{4 x}{3} \cdot \frac{2}{2}}{\frac{x}{6}} \Rightarrow \frac{\frac{8 x}{6}}{\frac{x}{6}} \\
\frac{8 x}{6}-\frac{x}{6} & =\frac{7 x}{6}
\end{aligned}
$$

10. Solve for variable and simplify:

$$
\begin{aligned}
& 3 y-8=16 \quad 3 \quad 3 y-8+8=16+8 \\
& 3 y=24 \Rightarrow \sum_{y}^{\not p y}=\frac{24}{3} \Rightarrow \frac{\not p^{\prime} \cdot 8}{y^{\prime}}
\end{aligned}
$$

11. Multiply:

$$
\begin{gathered}
4\left(3 x^{2}-2 x+1\right) \Rightarrow 4 \cdot 3 x^{2}-4+2 x+41 \\
12 x^{2}-8 x+4
\end{gathered}
$$

12. Multiply:

$$
\begin{aligned}
& (2 x-1)(3 x+2) \Rightarrow 2 x \cdot 3 x+2 x \cdot 2-1 \cdot 3 x-1 \cdot 2 \\
& =6 x^{2}+4 x-3 x-2 \\
& =6 x^{2}+x-2
\end{aligned}
$$

13. Find the area of the triangle.

14. Find the area for the circle:

$$
\begin{aligned}
& \text { Area }=\pi \mathrm{r}^{2} \\
& \text { Area }=\pi\left(8^{\prime}\right)^{2} \\
& \text { Area }=\pi 64 \\
& \text { Area }=201 \mathrm{ft}^{2}
\end{aligned}
$$

15. Using Phythagorean Theorem $\left(c^{2}=a^{2}+b^{2}\right)$ find the length of a_{1}

$$
b=12 \underbrace{c=18} \begin{aligned}
& \\
& c^{2}=a^{2}+b^{2} \\
& a^{2}=c^{2}-b^{2} \\
& a=? \\
& a=\sqrt{c^{2}-b^{2}} \\
& a=\sqrt{(18)^{2}-(12)^{2}} \\
& a=13.4
\end{aligned}
$$

16. If a bike wheel is $26^{\prime \prime}$ in diameter, how far will it travel in 10 xevolutions?

$$
\begin{aligned}
\text { One revolution } & =\text { circumference of wheel } \\
\text { Circumference } & =2 \pi r^{\text {or }} \pi \mathrm{d} \leftrightarrows\left(26^{\prime \prime}\right) \pi \\
\text { Circumference } & =81.68 \text { inches } \\
\text { Total Distance } & =10 \times \text { one revolution } \\
\text { Total Distance } & =10 \times\left(81.68^{\prime \prime}\right) \\
& =816.8 \text { inches }
\end{aligned}
$$

17. Find the volume of 1 " pipe that is 10^{3} long? I.D. of pipe is $3 / 4$ inches.

Volume $=$ Volume of a cylinder $=$ Area circle \times height
Area of circle $=\pi \mathrm{r}^{2}$ or $\pi \mathrm{d}^{2}$
Area of circle $=\pi\left(\frac{75}{2}\right)^{2}=0.4418 \mathrm{im}^{2}$
2
Height $=10^{\prime}$ conyert to inches

$$
10^{\prime} \times \frac{12^{\prime \prime}}{1^{\prime}}=120^{\prime \prime}
$$

$$
\begin{gathered}
\text { Volume }=\text { Area } \mathrm{O} \times \text { Height }=0.4418 \times 120 \\
\text { Volume }=53.0 \mathrm{in}^{3}
\end{gathered}
$$

18. The two rectangles shown are similar. Find the width of the smaller rectangle.

19. Jim is going to pour a concrete patio. The patio is $15^{\prime} \times 25^{\prime}$. There is a tree in the middle that requires a 4' diameter opening. How many yards of concrete will Jim need if the patio is $6^{\prime \prime}$ thick?

Area -0
Area $5 \times \mathrm{W} \times 15^{\prime} \times 25^{\prime}$
Area $=375 \mathrm{ft}^{2}$

$$
\text { Area } O=\pi r^{2}=\pi \frac{(\mathrm{D})^{2}}{2} \Rightarrow \frac{\pi(4)^{2}}{2}=\pi 4=12.6 \mathrm{ft}^{2}
$$

$$
\text { Total Area }=\square \cdot \mathrm{O}=375 \mathrm{ft}^{2}-12.6 \mathrm{ft}^{2}
$$

$$
\text { Total Area }=362,4 \mathrm{ft}^{2}
$$

Volume $=$ Area \times Thickness $=362.4 \mathrm{ft}^{2} \times 1 / 2 \mathrm{ft}$

$$
\text { Volume }=181.2 \mathrm{ft}^{3}
$$

Yaxds of Concrete $\Rightarrow 27 \mathrm{ft}^{3}$ per yard

$$
\begin{aligned}
\text { Total Yards of Concrete } & =\frac{\text { Volume }}{27}-\frac{181.2 \mathrm{ft}^{3}}{27} \\
& =6.7 \text { yards of concrete }
\end{aligned}
$$

