
 

1 

Public  

  

 
 
 

Pacific Gas and Electric Company 

EPIC Final Report  

  

 
Program 

 
Electric Program Investment Charge 
(EPIC)  

Project EPIC 3.20 Data Analytics for Predictive 
Maintenance  

 
Department 

 
Electric Operations - Asset Management  

 
Executive Sponsor Janisse Quinones 
Project Sponsor Craig Kurtz 
Project Technical Lead(s) 
Business Lead 
 
Contact Info 
 
Date 

Devon Yates, Maryam Variani 
Eric Schoenman 
 
EPIC_Info@pge.com  
 
March 23, 2023 

 
Version Type 

 
Final  

 

  



 

2 

Public  

Table of Contents 

Acknowledgements ............................................................................................................. 5 

Abstract .............................................................................................................................. 6 

Executive Summary ............................................................................................................. 7 

1 Introduction ................................................................................................................ 9 

2 Project Summary ........................................................................................................10 

2.1 Context ......................................................................................................................... 10 

2.2 Project Objectives ......................................................................................................... 12 

2.3 Scope ............................................................................................................................ 13 

2.3.1 Time horizon of failure predictions .................................................................................................. 13 

2.3.2 Out of Scope ..................................................................................................................................... 14 

2.4 Project Management ..................................................................................................... 14 

2.4.1 Agile-Scrum and Data Science Life Cycle .......................................................................................... 14 

3 Project Details: Part 1 – Distribution Transformers ......................................................15 

3.1 Understanding the Problem .......................................................................................... 15 

3.1.1 Distribution Transformer Descriptions ............................................................................................ 15 

3.1.2 Distribution Transformer Failure Modes ......................................................................................... 15 

3.1.3 Definition of a Failure ....................................................................................................................... 16 

3.1.4 Characteristics of AMI Voltage Data ................................................................................................ 17 

3.2 Analytics Platform ......................................................................................................... 18 

3.3 Benchmarking ............................................................................................................... 18 

3.3.1 Industry Benchmarking .................................................................................................................... 18 

3.3.2 Industry Vendors .............................................................................................................................. 19 

3.3.3 Internal SME Fact Finding ................................................................................................................ 19 

3.4 Literature Review .......................................................................................................... 20 

3.5 Data Collection ............................................................................................................. 21 

3.5.1 Data Sources .................................................................................................................................... 21 

3.5.2 Exploratory Data Analysis ................................................................................................................ 21 

3.6 Feature Development and Benchmarking Data .............................................................. 27 

3.6.1 Asset-level Voltage Anomaly Features ............................................................................................. 27 

3.6.2 Neighboring Transformer Features .................................................................................................. 27 

3.6.3 Temperature Features ..................................................................................................................... 27 

3.6.4 Load Features ................................................................................................................................... 28 

3.7 Model Development ..................................................................................................... 28 



 

3 

Public  

3.7.1 Train/Test Split Strategy ................................................................................................................... 28 

3.7.2 Pre-calibration Model ...................................................................................................................... 29 

3.7.3 Calibration ........................................................................................................................................ 29 

3.7.4 Primary Metrics ................................................................................................................................ 29 

3.7.5 Benchmark Results ........................................................................................................................... 29 

3.7.6 Model Inspection ............................................................................................................................. 31 

3.8 Demonstration Deployment / Field Validation ............................................................... 35 

3.9 Results .......................................................................................................................... 36 

3.9.1 Transformer Failures ........................................................................................................................ 36 

3.9.2 Engineering and Field Investigations Results ................................................................................... 37 

3.9.3 Field Investigations .......................................................................................................................... 39 

3.9.4 Summary of Results ......................................................................................................................... 41 

4 Project Details: Part 2 – SSDs and Outage Detection ....................................................42 

4.1 Understanding the Problem .......................................................................................... 42 

4.1.1 Definition of an Outage .................................................................................................................... 42 

4.1.2 Definition of a Source Side Device (SSD) .......................................................................................... 42 

4.2 Literature Review .......................................................................................................... 43 

4.3 Data Collection ............................................................................................................. 44 

4.3.1 Data Sources ................................................................................................................. 44 

4.3.2 Exploratory Data Analysis (EDA) ...................................................................................................... 44 

4.4 Feature Development.................................................................................................... 46 

4.4.1 Event Features ................................................................................................................................. 46 

4.4.2 Historical Outage Count Feature ...................................................................................................... 46 

4.4.3 SSD type Features ............................................................................................................................ 46 

4.4.4 Season Features ............................................................................................................................... 47 

4.4.5 Weather Features ............................................................................................................................ 47 

4.5 Model Development ..................................................................................................... 47 

4.5.1 Outage Labeling ............................................................................................................................... 48 

4.5.2 Train/Test Split Strategy ................................................................................................................... 48 

4.6 Validation Process ......................................................................................................... 49 

4.7 Primary Metrics ............................................................................................................ 50 

4.8 Heuristic Approach ........................................................................................................ 50 

4.9 Model Calibration ......................................................................................................... 50 

4.10 Results .......................................................................................................................... 51 



 

4 

Public  

5 Challenges ..................................................................................................................51 

6 Accomplishments ........................................................................................................53 

7 Learnings and Recommendations ...............................................................................54 

8 Path to Production ......................................................................................................55 

9 Technology Transfer Plan ............................................................................................56 

9.1 IOU’s Technology Transfer Plans .................................................................................... 56 

9.1.1 Information Sharing Forums Held .................................................................................................... 56 

9.1.2 Adaptability to other Utilities and Industry ..................................................................................... 56 

9.2 Data Access ................................................................................................................... 56 

10 Conclusion ..................................................................................................................57 

11 References ..................................................................................................................57 

11.1 Bibliography ................................................................................................................. 57 

12 Appendix ....................................................................................................................59 

12.1 List of Figures and Tables ............................................................................................... 59 

12.2 Definition of Terms and Abbreviations ........................................................................... 61 

 

  



 

5 

Public  

Acknowledgements 

Pacific Gas and Electric Company's EPIC program would like to recognize that this project 

would not have been a success without valuable contributions from various teams across the 

Utility. Members of Power Quality, Smart Meter Operations, Electric Operations, Standards 

and Asset Management, Asset Strategy, and the Asset Health and Performance Center provided 

important engineering and business insights.  Members and alumni of the Data Analytics and 

Governance department created a culture of success and an environment that fostered 

collaborative development and mutual accountability. PG&E’s Strategic Data Science team 

pushed the boundaries of what a utility can do and enabled others to do the same. 

In addition to the above teams, there were many individuals critical to the creation, structure, 

and successful execution of this historic project. To all of you - Thank You.  

 

 
 

Eric Schoenman 

Principal Operations System Engineer 

EPIC 3.20 Business Lead  

Devon Yates 

Principal Data Scientist 

EPIC 3.20 Project Part 1 Technical Lead 

 

 
 

John-Peter Dolphin 

Director, Strategic Data Science Team 

 

Maryam Variani 

Expert Data Scientist 

EPIC 3.20 Project Part 2 Technical Lead 

 

 

 

Project Team and Key Contributors: 

JP Dolphin, Devon Yates, Eric Schoenman, Maryam Hassani Variani, Sabrin Mohamed, Will 

McFaul, Aayushi Gupta, Rebecca Harcourt, Sandeep Kataria, Ana Maria Nungo, Aaron Lyons, 

Charles Scoma, Megan Kristovich, Barry Wong, Shane Buck, Michael Thibault, Jacinto Chen, 

Brinda Thomas, Greg Gillette, Fedor Petrenko, Dave O’Connor.  

 

  



 

6 

Public  

Abstract  

Utility assets experience wear and tear, and eventually break down. Utilities have taken 

different strategies for asset management which directly affect service reliability, affordability, 

and the company’s overall risk. The most passive strategy is to wait for the equipment failure to 

address the situation, or “run to failure”. An already-implemented improvement on this strategy 

is scheduled maintenance using heuristics regarding expected useful life and level of 

utilization. EPIC 3.20 explored and implemented a predictive model to detect the signs of near-

failure equipment.  

The project’s hypothesis for Part 1 was that an analytical model can be used in conjunction 

with existing PG&E data sets to predict distribution equipment failures. The results yielded that 

a machine learning algorithm can predict incipient failures on distribution transformers by 

using data sets (such as Advanced Metering Infrastructure [AMI] i.e., smart meter, asset 

location, and weather data) generally available to utilities through their ordinary course of 

operation. Furthermore, distribution assets have been proactively replaced based on the results 

of the model, reducing wildfire risk, and contributing to a more reliable and affordable service 

for customers. 

For Part 2 of the project, the team hypothesized that precursor meter events could be used to 

predict sustained outages. An example of a precursor is vegetation contacting a line on windy 

days, animal contact, or a bad switch causing an event in the meter. In this minimum viable 

product (MVP) stage of Part 2, the model has developed early insights into precursor events. 

Continued Exploratory Data Analysis (EDA), model refinement, and Subject Matter Experts 

(SME) engineering reviews are planned to achieve a production-ready model. 
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Executive Summary  

This final report summarizes the project objectives, technical process, initial results, and key 

learnings from EPIC 3.20 – Predictive Maintenance, as reported on in the EPIC Annual 

Report. It supports the EPIC program’s goal of enabling the timely sharing of lessons learned 

across the entire energy industry and beyond the program administrator for a specific project.  

Context  

A utility’s approach to asset management has an impact on reliability of service, system 

affordability, and the company’s risk profile. “Emergency outage restoration” has been the 

primary approach employed by utility transmission and distribution operations for decades. 

This approach, where utilities wait for equipment failures and respond as quickly as possible 

once those failures occur, aims to minimize near-term costs passed on to customers by ensuring 

assets are utilized through their entire life.  

The electric distribution sector of the utility industry has also adopted “scheduled maintenance” 

and “condition-based maintenance” approaches, both of which further reduce risk when 

compared to emergency outage restoration. This project aims to go a step beyond condition-

based maintenance, implementing “predictive maintenance,” which leverages sensor data and 

advanced analytics to identify signs of imminent failure. Predictive maintenance is most akin to 

a check engine light, which identifies when something in your vehicle is outside of normal 

operating conditions but has not yet led to your car being inoperable. This approach optimizes 

all three elements: reliability, affordability, and risk reduction. It identifies potential failures 

and outages before they occur, allowing for the re-routing of power or in some cases hot asset 

replacement (reliability), ensures assets are utilized through their entire useful life 

(affordability), and stops failures from occurring altogether - including those that could lead to 

wildfire ignitions or other safety incidents (risk). 

Key Objectives 

The core objective of EPIC 3.20 is to determine if machine learning models can be developed 

using existing utility data sets (i.e. data through SmartMeters™, asset location, and weather 

data) to predict electric distribution equipment failures and outages so that corrective action can 

be taken before either occurs.  

While initially launched prior to the establishment of PG&E’s Wildfire Mitigation Plans 

(WMP), the objectives of EPIC 3.20 directly align with the objectives of the WMP, 

specifically, “reduc[ing] the risk of catastrophic wildfires in Northern California.”  The 

accomplishments highlighted below directly support PG&E’s ability to meet this objective in 

an affordable and data-driven manner.  

Additionally, as discussed in more detail in PG&E’s Wildfire Mitigation Plan, distribution 

transformers were prioritized as a key asset to target for predictive maintenance models 

because they are one of the top sources of PG&E equipment-caused wildfire ignitions. 

Key Accomplishments 

The following summarizes the key accomplishments of the project: 

• A production-ready predictive maintenance machine learning model was developed, 

primarily using AMI voltage information, to predict failure of distribution transformers 
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• From April 2021 through February 2022, Engineering has reviewed over 270 model 

predictions, from which 64% were confirmed to be relevant transformer anomalies 

(“success”) and were flagged for field investigation. An additional 26% were confirmed to 

be other issues in the distribution system. 

• On multiple occasions near failing distribution transformers and meters have been 

proactively replaced based on the model’s recommendations, in doing so reducing wildfire 

risk and improving reliability for customers. 

• A MVP of a predictive maintenance machine learning model was developed, using meter 

event data, historical outage count, and weather data to predict outages caused by 

vegetation contact, equipment failure, animal contact and some unknown reasons.  

• In April 2022, internal engineering teams established a process to review the top 20 ranked 

monthly outage predictions and establish a feedback loop back into the model to further 

optimize future predictions. 

 Key Learnings and Recommendations 

The following are the lessons learned and recommendations from the project:  

• The development of predictive maintenance algorithms is not only possible, but also has 

significant potential to transform asset management – improving reliability, aiding 

affordability, and reducing risk. However, the ability of a utility or any third party to 

develop such algorithms is dependent on the utility’s underlying data management maturity 

and capabilities. This includes the entire data lifecycle including data acquisition, security, 

storage, organization, integration, governance, quality, and metadata.  

• The project team highly encourages the continued utilization of open-source programming 

languages such as Python. These open-source languages provide increased functionality not 

capable in legacy tools like Excel or SAS without sacrificing transparency. The utilization 

of cloud computing resources can dramatically decrease compute time and allows for on-

demand data insights when required.  

• EPIC 3.20 has demonstrated the need to pair improvements in technology (data science 

included) with business processes, and people development. People, process, and 

technology can be thought of as a three-legged stool to improve business outcomes. Each 

leg is required for the benefits of the others to be fully realized. The project team 

encourages all those who work to develop data products to take a comprehensive approach 

to how said products are imagined, designed, developed, and implemented.  

• Investments in advanced analytics, data science, and artificial intelligence will continue to 

be hamstrung if appropriate efforts are not made to treat data as an asset. There are several 

improvements that can be made to existing outage records. During Part 2 of the project, the 

team discovered numerous instances of inaccurate or missing data. 

Conclusion  

PG&E will continue to find ways to meet the challenges presented by operating the country’s 

most connected smart grid in an affordable manner. Proving that the successful development of 

predictive maintenance algorithms is possible using AMI data is a key part of this journey. Not 

only do these findings represent an opportunity for a better PG&E, but given the propagation of 

AMI networks, represent an opportunity for safer, more reliable, and more affordable utility 

asset management practices across the country.  
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Part 1 of EPIC 3.20 has grown from an early-stage data science project to a technology 

demonstration that will ultimately result in an operational data product. The path to production 

will need to include continuous improvement and maintenance of the model and user interface, 

and the integration of a new business processes to ensure that predictions are acted on in a 

timely manner. The findings, learnings, and challenges from Part 2 of the project have also 

provided valuable insights for PG&E. 

This project does not mark the conclusion of improvements to the Asset Management 

processes, or the end of utilizing industry leading data science to enable safer grid operations. 

PG&E looks forward to operationalizing this prototype and building additional capabilities in 

the upcoming years. 

1 Introduction 

This report documents the EPIC 3.20 – Predictive Maintenance project achievements, and key 

highlights and learnings. These findings provide industry-wide value and identify future 

opportunities for PG&E to leverage the results of this project. The CPUC passed two decisions 

that established the basis for this demonstration project. The CPUC initially issued D. 11-12-

035, Decision Establishing Interim Research, Development and Demonstrations and 

Renewables Program Funding Level1, which established the EPIC program on December 15, 

2011. Subsequently, on May 24, 2012, the CPUC issued D. 12-05-037, Phase 2 Decision 

Establishing Purposes and Governance for Electric Program Investment Charge and 

Establishing Funding Collections for 2013-20202, which authorized funding in the areas of 

applied research and development (R&D), technology demonstration and deployment (TD&D), 

and market facilitation. In this later decision, the CPUC defined TD&D as “the installation and 

operation of pre-commercial technologies or strategies at a scale sufficiently large and in 

conditions sufficiently reflective of anticipated actual operating environments to enable 

appraisal of the operational and performance characteristics and the financial risks associated 

with a given technology.”3 

These decisions also required the EPIC Program Administrators4 to submit Triennial 

Investment Plans to cover three-year funding cycles for 2012-2014, 2015-2017, and 2018-2020. 

On November 1, 2012, in A.12-11-003, PG&E filed its first triennial EPIC Application at the 

CPUC, requesting $49,328,000 including funding for 26 TD&D Projects. On November 14, 

2013, in D.13-11-025, the CPUC approved PG&E’s EPIC plan, including $49,328,000 for this 

program category. On May 1, 2014, PG&E filed its second triennial investment plan for the 

period of 2015-2017 in the EPIC 2 Application (Application (A.) 14-05-003). The CPUC 

approved this plan in D.15-04-020 on April 15, 2015, including $51,080,200 for 31 TD&D 

 

 

1 CPUC Decision.11-12-035. 

2 CPUC Decision.12-05-037. 

3 CPUC Decision.12-05-037, p. 37. 

4 PG&E, San Diego Gas & Electric Company (SDG&E), Southern California Edison           

Company (SCE), and the CEC 

https://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/167664.PDF
https://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/167664.PDF
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projects5. On April 28, 2017, PG&E filed its third triennial investment plan for the period of 

2018 – 2020 in the EPIC 3 Application (Application (A. 17-04-028). The CPUC approved this 

plan in D.18-10-052 on October 25, 2018 including $55,600,000 for 43 TD&D projects6.  

Pursuant to PG&E’s approved 2018-2020 triennial plan, PG&E initiated, planned, and 

implemented EPIC 3.20 - Data Analytics for Predictive Maintenance. Through the annual 

reporting process, PG&E kept CPUC staff and stakeholders informed on the progress of the 

project. This document is PG&E’s final report on the EPIC 3.20 project. 

2 Project Summary 

2.1 Context 

As outlined in PG&E’s 2020 Wildfire Mitigation Plan, PG&E utilizes a variety of approaches 

to confirm the safety and operability of its equipment.7 As part of PG&E’s commitment to 

continuous improvement, EPIC 3.20 is one of several projects aiming to improve PG&E’s 

approach to asset management – specifically the utility’s approach to inspections and 

maintenance of distribution assets.  

PG&E’s current approach to inspections of distribution equipment is comprised primarily of 

on-site visual inspections. This includes highly trained inspectors who climb utility poles or 

otherwise inspect assets using aerial photography. These inspections are part of a proactive 

approach to asset management called “scheduled maintenance.” Scheduled maintenance is 

implemented at many utilities with the goal of identifying asset degradation in advance of asset 

failures. In doing so, the risk associated with grid operations is reduced, when compared to 

traditional run to failure/emergency restoration approaches most common in the utility industry 

for decades. At PG&E, the cadence for this scheduled maintenance varies based on asset type. 

For example, the cadence for distribution transformers is approximately once every three to 

five years.  

When compared to emergency restoration, scheduled maintenance does a better job of 

incorporating the risk of asset failure into maintenance and replacement schedules. However, it 

can be comparatively more costly to implement in the near term due to the cost of recurring 

inspections and the replacement of assets before the completion of their useful life. Continuing 

the car analogy, scheduled maintenance is most akin to inspecting and replacing your tires on a 

regular basis regardless of how many miles you drive or the condition of your vehicle.  

An improvement over scheduled maintenance is “condition-based maintenance” in which 

heuristics regarding expected useful life and level of utilization are used to augment the 

duration of time between inspections. This is most akin to “1 year or 40,000 miles” when 

 

 

5 In the EPIC 2 Plan Application (A.14-05-003), PG&E originally proposed 30 projects. Per 

CPUC D.15-04-020 to include an assessment of the use and impact of EV energy flow 

capabilities, Project 2.03 was split into two projects, resulting in a total of 31 projects. 

6 CPUC Decision.18-10-052, p. 115 

7 PG&E 2020 Wildfire Mitigation Plan 

https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/EPIC3_D.18-10-052.pdf
https://www.pge.com/pge_global/common/pdfs/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan/2020-Wildfire-Safety-Plan.pdf
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recommending inspections for a car. The use of simple heuristics can be beneficial, but still 

leaves much to be desired across all three elements (reliability, affordability, risk). For instance, 

at PG&E, risk factors such as the location of an asset within a High Fire Threat District 

(HFTD) may be used as a heuristic. HFTDs have grown from accounting for 15% of PG&E’s 

service territory to 50% of PG&E service territory.7  As a result, what was previously 

considered high-risk, enhanced inspections are now the new normal, pushing Inspectors and 

PG&E to inspect more territory with increased frequency, while keeping rates affordable.  

The development of predictive maintenance algorithms offers a potential release valve on these 

two competing forces. Like process improvements focused on the manufacturing industry, 

predictive maintenance could allow for “Just in Time” completion of maintenance. Such an 

approach would dramatically reduce the cost associated with constant inspections and could 

catch failure events that occur between scheduled inspections. The development of predictive 

maintenance using existing data sources would truly help maintain affordability, while reducing 

risk.  

Following the CPUC’s approval of the third EPIC triennial plan in 2018, EPIC 3.20 was 

initiated and the project team began focusing their efforts on reducing wildfire risk through 

predictive maintenance. As defined by the company’s risk registry, wildfire is PG&E’s largest 

risk. Due to climate change, California has experienced increased frequency and severity of 

wildfires, with the seven largest fires in the state’s history all occurring in just the 3 years since 

the project was submitted for approval to the CPUC.8  

In 2019, the year of EPIC 3.20 initiation, and therefore the year more detailed planning was 

completed for the project, there were more than 6,200 fires in California.9 Of these, PG&E 

equipment was associated with 434, with asset failure accounting for 133. See Figure 1 for full 

details. 

 

 

 

8 CAL FIRE - Top 20 Largest California Wildfires 

9 CAL FIRE - Stats and Events  

https://www.fire.ca.gov/media/11416/top20_acres.pdf
https://www.fire.ca.gov/stats-events/
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Figure 1: 2018 Suspected ignition initiating events and breakdown of asset-equipment failures 

In Part 1 of the project, transformers, fuses, and capacitor banks were considered as the most 

addressable assets for EPIC 3.20’s scope of existing data. This was expanded in Part 2 to 

include source side devices (circuit breakers, line reclosers, and fuses). The most recent figures 

can be found in the 2021 Wildfire mitigation plan10.  Beyond the wildfire benefits, distribution 

transformers and fuses are also disproportionately associated with general reliability issues (a 

superset of all outages, regardless of if they are associated with ignitions), further emphasizing 

them as high priority targets for predictive maintenance. 

Utility asset management is a rapidly evolving field, especially in California. PG&E hopes that 

by sharing this report, in a manner that is transparent, we will enable others to learn not only 

from our success, but also from our stumbles. By doing so we will improve reliability, enable 

affordability, and reduce risk at utilities across the industry.  

2.2 Project Objectives 

As described in PG&E’s EPIC Triennial Plan (2018-2020)11 , the project pursues the 

development of predictive maintenance algorithms for identifying conditions of impending 

asset failure in distribution equipment by using SmartMeter™ data and other existing utility 

data sources.  

 

 

10 PG&E 2021 Wildfire Mitigation Plan - Quarterly Data Report for Second Quarter 2021 

11 PG&E Electric Program Investment Charge Triennial Plan (2018-2020) 

Animal
13%

3rd Party
22%

Other / Unknown
7%

Vegetation
26%

Conductor
11%

Fuse
2%

Capacitor Bank
2%

Voltage Regulator, 1%

Transformer
3% Splice / Clamp / 

Connector
7%

Other
6%

Asset / Equipment 
Failure, 32%

https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan.page?WT.mc_id=Vanity_wildfiremitigationplan
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/EPIC-3-Application-PGE.pdf
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The goal is that algorithms detect and correlate data signatures associated with malfunctioning 

or failing system assets. These algorithms can be thought of as a “check engine light” for a 

vehicle identifying assets operating outside of normal parameters that have not yet failed. If 

successful, the performance of these algorithms would be evaluated against traditional 

condition-based maintenance systems. If appropriate, these data driven insights would then be 

incorporated into an asset management process, improving PG&E’s reliability, affordability, 

and risk profile.   

2.3 Scope 

Using existing data available to PG&E, a model or algorithm(s) will be developed to detect 

incipient failures on the distribution system, in order to identify and mitigate the situation 

before it results in a failure, customer complaint, or ignition. 

While multiple asset types were considered in the initial scope of this project, the primary focus 

was ultimately on distribution transformers, for Part 1, and source side devices (SSDs) for Part 

2. Moreover, Part 2 of the project aims to use precursor momentary outages and events to 

identify an incipient sustained outage.  

In the longer term, it is envisioned that outcomes from both parts of the project could result in 

an automatic dispatch of trouble man or field personnel through the work management system.  

2.3.1 Time horizon of failure predictions 

When developing a model for failure predictions, it is important to consider the time horizon. 

The relevant time ranges for distribution equipment can be thought of in the scope of years, 

months, days, or real time. Accordingly, the impact and probable actions could vary. For 

example, predicting failures that could take place in a year’s time could help us in long term 

resource planning. The detailed impact of time scope on algorithmic approach is shown in  

Figure 2 below: Note that EPIC 3.20 focuses on real time and days to approximately a month 

before failure, and thus would be helpful in proactive/preventive maintenance. 

 

Figure 2: Impact of time scope on Algorithmic approaches 
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2.3.2 Out of Scope 

Consistent with the Project Objectives and official application language, the following items 

were out of scope for EPIC 3.20: 

• Acquisition of new data not already captured/available may occur but is not required.  

• Model development for assets other than distribution transformers and source side 

devices may occur but is not required. 

• Development of fully operational user interface, unless deemed necessary given 

algorithm results. A preliminary user interface may be developed for testing. 

• Laboratory testing of distribution line equipment at ATS, unless the data discovery and 

failure mode exploration process determines that there would be significant value added 

from such testing.  

2.4 Project Management  

2.4.1 Agile-Scrum and Data Science Life Cycle 

The project team implemented an Agile-Scrum project management approach, which allows 

the project team to adapt to changing business needs, avoid excessive sunk costs, and nimbly 

respond to project development challenges.  

Paired with Agile-Scrum, the team used the Data Science Lifecycle as outlined below as a 

framework for their development. While these phases can be chronological, the project team 

regularly cycled back to a previous step based on new learnings or business priorities.  

• Define the Problem   

o Problem Definition and Scoping 

o Literature Review 

• Prepare Data 

o Data Discovery and Acquisition   

o Data Cleansing 

o Feature Engineering 

o Exploratory Data Analysis 

• Build and Train Models 

o Model/Feature Development 

o Model/Feature Testing 

o Documentation and Code/Peer Review 

• Deployment 

o Model Release 

o Model Deployment 

o Business Process Integration 

o Continuous Monitoring and Maintenance 
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3 Project Details: Part 1 – Distribution Transformers 

3.1 Understanding the Problem 

3.1.1 Distribution Transformer Descriptions 

Transformers are electric equipment which are used to change the magnitude of electric 

voltage. They are composed of an iron core with two sets of copper windings wrapped around 

the two sides of the core. The current flowing in the windings on one side of the iron core 

induces a magnetic field in the core, which in turn induces a current and voltage in the 

secondary windings. The “turns ratio” of the number of turns in the two windings determines 

the ratio of the input and output voltage levels. A diagram of this process is shown in Figure 3: 

 

Figure 3: Transformer windings 

Distribution transformers are the transformers which step down voltage from medium to low to 

supply service to customers, and for the purposes of this project excludes networked 

transformers and primary step-down transformers.  Distribution transformers do not normally 

have any measurement equipment built in and it is difficult to observe their operating 

characteristics. In this project, AMI data has been used to estimate the voltage at the 

transformer low voltage side.  

3.1.2 Distribution Transformer Failure Modes 

As part of the fact-finding process, the common failure modes for distribution transformer have 

been tabulated and are described in Table 1. Note that these failure modes may in fact be 

intertwined. For example, a tank failure may result in low oil, which may cause overheating of 

the transformer, resulting in deterioration of the insulation, leading to winding shorts, which 

eventually makes the transformer more likely to fail due to voltage transients in a lightning 

storm. 

Table 1: Distribution transformer failure modes 

Failure Mode Cause Effect 

Core failure Direct Current (DC) magnetization or 
displacement of the core steel during 
transformer construction 

Reduced efficiency which may 
manifest as a change in the impedance 
characteristics of the transformer. 
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Solid insulation failure  

Also known as Winding Failure 

Transformer movement or forces 
generated during short circuits. Faults 
in insulating material may occur due to 
generation of gas or hot spots created 
due to low oil or transformer 
overloading 

No insulation between windings, 
resulting in intermittent or complete 
short circuits between the windings. 
Short circuit may be preceded by a 
fuse failure. 

Tank failure Oil leakage, corrosion, internal arcing Tank rupture 

Cooling oil failure Bad oil circulation or poor heat 
transfer to secondary cooling circuit; 
Oil contamination. 

Overheating, short circuit 

Bushings failure Age, moisture, physical damage Short circuit 

Physical damage Vandalism, structure failures, foreign 
objects, or animals 

Various effects  

Fuse trip Lightning, short circuit All or partial disconnection of phase. 

Loss of neutral Vibration, temperature, poor 
workmanship, poor balancing, 
network overloading 

Conductor melts and ultimately breaks 
off. Safety risk from high voltage at 
secondary. 

 

3.1.3 Definition of a Failure 

The source records for failures in EPIC 3.20 are work management notification records which 

are composed of a start and end date, along with a notification type, equipment type, failure 

type and, in some cases, a cause. To create a useful classification label for supervised learning 

methods, these date ranges must be converted into labels which indicate a failure. The concept 

used to perform this transformation is shown in Figure 4: 

 

Figure 4: Failure definition 

The source data bounded by the source start and source end represents the data used to develop 

the features used in the prediction. The prediction horizon is the length of time after the 

prediction start date, that a failure event would result in the prediction being labelled as a 

failure. The failure start date represents the date that the failure occurs or is first identified. The 

failure end date is the date at which the equipment is restored to full working order. In the case 

of unplanned transformer failures, the failure starts, and end dates are often the same, but in the 
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case of voltage anomaly inspections or line regulator anomalies there may be a period between 

when the notification is initiated and completed. For voltage regulators, this can be a period 

where a trouble-man has identified an issue and bypassed the device as a temporary resolution 

until the equipment can be repaired and the notification completed.  

The primary goal of this algorithm is to identify incipient failures using voltage data prior to the 

failure accelerating to a catastrophic or unplanned outage. Therefore, we want to observe 

failure characteristics in a time prior to the actual failure.   

3.1.4 Characteristics of AMI Voltage Data 

The AMI voltage data is a primary driver of the analytics in this project, so it is important to 

understand the characteristics and limitations of this data. A single line representation of a 

common configuration of a transformer is shown in Figure 5. For using voltage data, it is 

desirable to have measurements of the voltage on the high and low side of the transformer, VT,H 

and VT,L. However, those measurements are not available in our system unless special 

diagnostic equipment is installed. Fortunately, PG&E does have the voltage readings at the 

Smart Meter™. In most cases, these will not match the voltage on the low side of the 

transformer, because some voltage drop is expected along the secondary and service conductor, 

as a function of current and impedance. In fact, if voltage, current, power factor and the 

impedance characteristics of the secondary and service drop conductors were known, then it 

would be possible to calculate the voltage at the low side of the transformer directly.  

Though the voltage is captured at the Smart Meter™, in the existing AMI implementation, 

current and power factor are not available. Additionally, accurate secondary topology and 

therefore impedance are not known in most cases. At that point, there will be analytical 

methods which can be used to develop a reasonably accurate estimate of the voltage on the low 

side of the transformer, but until that point, simplifying assumptions must be made to estimate 

this value. 

  

Figure 5: AMI data one-line diagram example configuration 

A simplifying assumption which helped in comparing voltages from one meter to another is to 

normalize the voltage to a unit voltage to facilitate comparisons. This normalization is achieved 

by dividing the voltage read by the nominal voltage. Unfortunately, this nominal voltage is not 

provided by the measurement equipment or recorded on installation. Therefore, a process was 

developed to identify the nominal voltage of a given channel. 
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Finally, each AMI voltage measurement needs to be understood in the context of its circuit. 

When an anomaly is observed on an AMI voltage reading, there can be many causes. It could 

be a line regulator or capacitor operating or malfunctioning. It could be a result of extreme 

customer load behavior or weather conditions. It could also be a voltage event originating in the 

source voltage of the substation. When trying to isolate the root cause of the anomaly, a holistic 

view must be taken to isolate the signal of interest. 

3.2 Analytics Platform 

The primary data collection for EPIC 3.20 occurs on PG&E’s customer data warehouse and 

GIS platforms. The data was integrated using a cloud platform customized for PG&E’s 

requirements. This platform provided easy to use tools with detailed documentation and much 

better integration to better handle the data and create machine learning models using this data. 

This enhanced the efficiency with which the project progressed with the help of its spark 

distributed compute capabilities and other useful tools that made exploring, visualizing, and 

using the data a lot easier. 

3.3 Benchmarking 

The project team engaged in a fact-finding mission to identify learnings from prior work and 

benchmark against the state of the art. This search involved reaching out to other utilities, 

subject matter experts (SMEs) within and outside of PG&E and performing a literature review 

to identify relevant results and methods. 

3.3.1 Industry Benchmarking 

Interviews were held with ComEd, Southern California, and San Diego Gas and Electric to 

benefit from existing experience around predictive failure modeling, and to develop an ongoing 

dialog to foster collaboration. 

ComEd has publicized their innovative approach in the article “Predicting Distribution 

Transformer Failures” [3]. Their work focused on several failure modes which could be 

identified through voltage anomalies. They identified that transformer windings failures could 

result in an abnormally high voltage as the turns ratio was modified by the windings failure. 

They also hypothesized that voltage could be used to observe a failure in the transformer core 

by observing a change in the voltage response of the transformer under load.  

A key insight that the ComEd team discovered was that the transformer voltage cannot be 

looked at in isolation due to the complex dynamics of the distribution electrical network. 

Therefore, they isolated the anomaly by comparing transformers which were neighbors to each 

other, and on the same phase. For transformers A, B, and C, where B is between A and C, they 

created a feature which was the difference in voltage between transformer B and the average of 

A and B.  

Given that each transformer may have multiple meters, a transformer voltage needed to be 

estimated using the meter voltages. They attempted to minimize the impact of the service drop 

by identifying the meters with the smallest difference between each other, with the assumption 

that these were the meters with the least voltage impact from load. One important input to this 

estimate was the phasing of the meter readings, as without this information phase imbalance 

can create a false signal. 
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The ComEd work reported impressive results. However, when testing the performance on data 

not seen in the training process, performance did not match that level. This is likely a result of 

the time series not being generalizable to different periods of time. The team at ComEd 

continue to develop promising models. 

Southern California Edison and San Diego Gas and Electric also provided valuable insight into 

predictive failure models being developed. Details are not discussed here as results of those 

investigations have not been published. 

3.3.2 Industry Vendors 

The project team engaged with industry vendors in the space to identify if there were any 

existing available commercial solutions. Most vendors providing predictive maintenance for 

transformers were oriented towards substation power transformers. Power transformers tend to 

have more measurements than distribution transformers, as well as established preventative 

maintenance programs.  

For distribution transformers, the commercial solutions for predictive maintenance were not 

well developed. This is likely due to the historically low appetite for this in the utility industry. 

Several vendors pointed out that the engineering standards, data structure, and data quality 

among different utilities made it difficult to make a generalizable product. Some vendors did 

have experience with distribution transformers and underground cables, but the project team 

recognized that using these products would result in an unsuccessful outcome without 

completing the hard work of developing good failure records for the assets. This effort was the 

fundamental problem that must be solved before the data could successfully be shared with 

outside consultants. 

3.3.3 Internal SME Fact Finding 

Fact-finding internal to PG&E focused around identifying the optimal project use case. Asset 

managers and operations staff were interviewed to understand each use case, business value, 

insights, and pitfalls. Internal SMEs were interviewed for each asset class under consideration. 

These potential use cases included secondary network devices, underground cables, 

transformers, and voltage regulators. This effort, as covered in the sections below, identified 

distribution transformers and voltage regulators as equipment that would benefit from 

predictive failure modeling due to the attractive blend of failure record availability, data 

availability, and business value. The distribution transformer use case had the added benefit of 

having an existing manually executed process to investigate voltage anomalies for potential 

failure. 

3.3.3.1 Distribution Network Equipment 

In urban areas, the PG&E distribution system is configured in a network configuration, as 

opposed to the radial configuration used in the bulk of the secondary systems. Secondary 

distribution network configurations are a redundant design where each component has multiple 

sources operating in parallel. Components on the network system tend to be much larger than 

those found on the radial circuits and tend to have much more measurement data available.  

According to the SMEs, the best opportunity for predictive maintenance activities was on 

network protectors, devices used to automatically disconnect a distribution transformer in the 

case of reverse power flow or other anomalous behavior. In past failures, it had been possible to 
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observe a change in the relationship of pressure and temperature to loading in these devices, 

and there was potential to automate this process. It was noted that the number of failures on 

these types of equipment were rare. Another component that could benefit from predictive 

maintenance are the power transformers, which tend to be large and well instrumented and 

annually inspected.  

Underground cables in network systems also could benefit from predictive maintenance, as 

they can have a large impact, and historically failures occur on average about 10 times a year. 

However, cables have the challenge that there is very little measurement data on them. In 

network configured distribution systems, it is particularly challenging to estimate the loading 

for a particular cable due to the redundancy in the configuration. 

3.3.3.2 Distribution Transformers 

PG&E services distribution transformers according to a proactive maintenance and replacement 

strategy by, for example, identifying overloaded transformers. Data quality issues, however, 

have created problems for that process. Service points associated with the wrong transformer 

and inaccuracies in the transformer’s recorded capacity cause the loading calculation to be 

inaccurate.  Additionally, historical records of transformer loading are only stored for 3 years, 

leading to an inability to capture the full lifetime loading of the transformer. 

Additional proactive mechanisms for identifying transformer failure exist within the power 

quality and voltage desk processes. These processes leverage information from customer 

complaints regarding power quality and monitoring of Rule 2 violations to trigger field reviews 

of distribution transformers. 

The general process for replacement outside of the data-driven approaches above is a 1-3 year 

visual inspection cycle for transformers. A Standards engineer noted that many of the 

replacements were triggered due to external corrosion, which may or may not represent a 

functional deterioration of the transformer.  

3.3.3.3 Voltage Regulators and Capacitors 

Voltage regulators and capacitors are devices installed on the distribution system to mitigate 

voltage issues. They may have a schedule or control parameters associated with them, but these 

schedules are not available in a centralized database. In the past, these devices were maintained 

with a 10-year overhaul cycle, but now they are maintained with an annual inspection and are 

run to failure.  

3.3.3.4 Underground Cable 

The project team interviewed SMEs from the overhead and underground cable asset 

management groups and determined shortcomings in data recording that would hinder a 

machine learning approach. Cable segments are not tracked as assets in the equipment asset 

management database. While they are tracked in the geospatial database, there is no record of 

historical changes to the data making the task of associating asset and associated characteristics 

to a recorded failure difficult.  

3.4 Literature Review 

A literature review of predictive analytics uncovered three focus areas: predictive equipment 

maintenance, predictive failure detection, predictive stress case identification. Most of the 
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predictive analytics models reviewed studied distribution transformers or substation power 

transformers, while one presented a generic approach with a use case in semiconductor 

manufacturing [2].  

The literature review showed that projects developing machine learning (ML) methods 

typically evaluated multiple ML models and compared the results to historical data to identify 

which model performed best. ML models implemented included: Random Under Sampling 

with Boosting (RUSBoost) [1], random forest [1], Support Vector Machines (SVM) with 

Monte Carlo Cross Validation (MCCV) [2], feed-forward deep neural network (DNN) [3], 

DNN with digital signal processing [3], gradient boosting [3], and logistic regression [8]. 

Model outputs were compared against existing utility procedures and were found to perform 

with high precision [1,3]. While some models were executed periodically (e.g., weekly) [1], 

others were intended for real-time use [4]. 

Feature selection was a key part of model development and exposed the richness of data inputs 

to the ML models, as well as the development of tools to calculate features where recorded data 

did not exist. Features included equipment-related data (age, model, manufacturer, useful life, 

total operating cost), use-related data (loading, voltage, intensity of power spectrum of voltage), 

and environment-related data (region, subtype, weather (rain, humidity)) [1]. In [5] a tool was 

developed to predict hourly loading at any point between the customer and the substation. The 

ML models developed were trained over existing datasets, with the training sets showing a 

large variation in the size and time period. Proposed future work identified a need for 

abstraction from a time-period specific approach [3].  

In addition to ML model research and development executed by electric utilities, asset analytics 

offerings by independent companies were reviewed [4]. These offerings leveraged real-time 

performance data and predictive algorithms to provide equipment maintenance insights, 

including the development of equipment maintenance dashboards. 

Tying ML models back to physical equipment failures, an analysis of failed equipment [7] 

using an IEEE standard [9] served to identify distribution transformer failure modes and their 

frequency.  

3.5 Data Collection 

3.5.1 Data Sources 

Developing a supervised model to predict asset failures requires finding sources for asset 

metadata, measurement data, and equipment failures. The following types of data were used: 

- Smart Meter™ voltage data 

- Distribution network topology information 

- Asset characteristic data 

- Equipment failure and outage data 

- Historical Ambient Temperature data 

- Transformer Historical Load data 

3.5.2 Exploratory Data Analysis 

Exploratory data analysis (EDA) conducted on the datasets identified in Section 3.5.1 is 

presented below.  
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3.5.2.1 Failure Data 

Three types of failure data were used in developing the models. Each of these was filtered to 

identify failures tied to distribution transformers: 

- Ignition failures: A list of ignition-related failures was obtained from an internal PG&E 

team that is focused on diving into each ignition and researching various data stream 

within PG&E to identify the true source and cause of the failure. 

- Heatwave failures: These failures spanned the period of August 14th through 20th 2020 

where the PG&E territory experienced a heatwave. PG&E’s territory often experiences 

its highest temperatures in late June. 

- Outages: PG&E records all outages in the system along with initiation and conclusion 

date, and cause.  Unplanned outages which were associated with a transformer or 

transformer subcomponent and had a cause of Equipment failure or Environmental 

causes.  Environmental causes were included, because frequently failures attributed to 

lightning have been identified to have incipient behavior prior to the failure, but the 

transients associated with lightning storms were the final cause of the failure.  

A summary of the failure rates included in the curated failure list is shown in Figure 6.  The 

month average rate of failure is 0.04%.  There are frequently spikes in the summertime 

associated with heat waves, though those are not present in all years. 

 

Figure 6: Failure Rate for selected failure events 

3.5.2.2 Network Topology 

The PG&E network includes electric power transmission and distribution systems. A substation 

at the head of a feeder steps down from a transmission-level voltage to a distribution-level 

voltage. Power travels along the length of a feeder, which resembles a tree with multiple 

branches reaching to individual service points. Upon arrival at the service point, distribution-

level voltage is stepped down to the required service voltage by distribution transformers. 
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Electric meters installed at the service point monitor electric usage. The PG&E network 

includes legacy electric meters and SmartMeters™. The EPIC 3.20 project focuses on using 

SmartMeter™ data.  

As shown in Figure 7, the PG&E network consists of approximately: 

  

 

3,500 feeders 860,000 transformers 5.6 million smart meters 

Figure 7: PG&E System characteristics      

Transformers are “dotted” along the length of the feeder and its branches. All transformers 

except for the one closest to the substation will have an upstream transformer; all transformers 

aside from those at the end of a branch will have a downstream transformer.  Of the 860,000 

transformers: 

• 98% had an identified upstream transformer 

• 61% had an identified downstream transformer 

Voltage regulators are installed at strategic locations along the feeder and serve to 

automatically modify downstream voltage in cases where it may begin to drop below desired 

levels. On average, there are approximately 100 transformers per regulator, with the minimum 

being 1 and the maximum being 1,500. 

3.5.2.3 Asset Data 

3.5.2.3.1 Transformer Installation 

Distribution transformers may be installed overhead on poles, pad-mounted at street level, or 

underground. Figure 8 shows the distribution of transformer installation type across the PG&E 

network. 
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Figure 8: Transformer Installation Types 

3.5.2.3.2 Transformer Rating 

Of the 860,000 transformers, 96% had a rating of under 200kVA. Figure 9 shows the 

distribution of these transformers. 

 

Figure 9: Histogram of transformer kVA rating 
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3.5.2.4 Voltage Data 

3.5.2.4.1 Meter Form 

The meter form determines what type of meter may be installed in a particular service. Figure 

10 shows the distribution of meter forms across the PG&E network. Form 2s meters comprise 

about 80% of the PG&E network, with 12s- and 16s-meter forms having greater than 3% 

representation. 

 

Figure 10: Meter forms across the PG&E network 

3.5.2.4.2 Service Type 

The service type involves the number of phases, number of wires, and the type of neutral 

present. The combination of these determines line-to-line, and line-to-neutral voltages and 

hence the service voltage. The ranges of service type include:  

• Number of phases: single or three phase 

• Number of wires: 2, 3, or 4 

• Neutral present: 

o Wye systems have a neutral 

o Delta systems typically do not have a neutral 

Figure 11 shows the distribution of service types across the PG&E network, as tabulated at the 

service point level. 92% of the services are 3-phase, 4-wire Wye. This type of service uses star 

connected phase windings with the fourth wire (or neutral wire) taken from the star point. This 

results in a line-to-neutral voltage of 120V, and a line-to-line voltage of 208V. 
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Figure 11: Service types across the PG&E network 

3.5.2.5 Temperature Data  

Ambient air temperature plays a significant role in the ability of a transformer to cool down and 

thus weather data was obtained and analyzed as a potential feature. The data consists of records 

collected every 15 minutes for years ranging from 2011 to 2020. We performed exploratory 

data analysis to find any potential quality issues and to understand the trends. As the data was 

plotted, non-physical outliers were identified and to overcome the issue an outlier filter was 

applied, as can be seen in Figure 12 and Figure 13. The meteorological  tower data was further 

mapped to transformers to be made usable for the model. Due to the limitations of the dataset, 

~0.5 % of the transformers could not be mapped to a near-by meteorological  tower. As a part 

of feature engineering, a decision was made to use data for the years 2017 and 2018 to produce 

features.  

 

Figure 12: Minimum monthly temperature frequency distribution (with outliers) 
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Figure 13: Minimum monthly temperature frequency distribution (without outliers) 

3.6 Feature Development and Benchmarking Data 

This section describes the data used in developing machine learning model features, along with 

the failure data used in training and testing the model. 

3.6.1 Asset-level Voltage Anomaly Features 

The nominal voltage data, consisting of voltage versus time tagged by service point and phase, 

was used to develop asset-level features by aggregating phase-level data up to the transformer 

level. Voltage data was aggregated over a day for sample dates selected for model evaluation. 

This aggregation resulted in anomaly features based on percent over- and under-voltages from 

nominal voltage, and was then summarized by service point phase (SPP), service point (SP), 

and transformer (TX).  

3.6.2 Neighboring Transformer Features 

The neighboring transformer features were formulated to determine if the voltage anomaly 

existed only on meters under the selected transformer or if neighboring transformers were also 

impacted. If the anomaly was seen on both the transformer and its neighbors, it was assumed to 

be caused by an issue on upstream network equipment, and not tied to an individual failure on a 

distribution transformer. 

The neighboring transformer features were developed based on a representative voltage. For 

multi-meter transformers, this is the average voltage for two meters under a transformer 

identified as bellwether meters. For single-meter transformers, the transformer voltage was 

equated to the meter voltage. 

3.6.3 Temperature Features 

Temperature features were developed to provide the model with insight into how ambient 

temperature affected transformer function. Features developed included maximum and average 

temperature, and maximum number of consecutive days with minimum temperature greater 

than 80 degrees Fahrenheits to account for the cooling ability of a transformer depending on the 

ambient temperature. 
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3.6.4 Load Features 

Load features were developed to provide the model with insight into transformer loading over 

the last month, last 3 months, and the last 12 months.  Though it was desirable to include the 

lifetime loading of the transformer, given the data retention history and the train-test split 

constraints, only a maximum of 12 months of history was achievable.  Average loading, 

maximum percent loading, and number of months with an overload incident were among the 

features provided to the model.  

3.7 Model Development 

The model delivered a list of ranked distribution transformer failure predictions using a 

planning horizon of 30-days, and an emergency horizon of 7-days and was developed in the 

open source Scikit-learn project library [11]. The model is presented below. 

The model machine learning process was based off a “golden failure” dataset, which included 

transformers that experienced ignition, heatwave, or outage-related failures, combined with a 

subsampled dataset of non-failing transformers. Each of these transformers was assigned to 

either the train or test set as described in Section 3.7.1. A failure label column indicated the 

failure/non-failure state of the transformer. Transformers in the training dataset were split into 

separate groups with one of these groups making up the test dataset, one group making the 

training set, and one group making the calibration set. 

Tree-based ensemble classification models were the primary class of algorithm used for this 

project as they were appropriate for tabular data, and because multiple failure modes were 

anticipated, so an ensemble method was more able to make simple models for multiple failure 

modes. Also, tree-based algorithms accomplish automatic feature selection. The project team 

analyzed the resulting feature importance to interpret the features which were being heavily 

weighted and to determine if the model was picking up features that were expected to be 

important given an understanding of the problem. Key features that had high importance in the 

models were the magnitude and direction of the voltage difference between a transformer and 

its neighbors, the percent of low Rule 2 violations, the range of voltage anomalies for all 

service points on the transformer, the loading characteristics over the prior 12 months, the 

voltage level and capacity rating of the transformer, and the 75% quantile of the average 

historical temperature.  

3.7.1 Train/Test Split Strategy 

Separate train and out-of-sample test data sets were developed by querying failure records for 

the period of analysis, grouping by feeder, sorting by number of failures, and then selecting 

alternating feeders from this sorted list to achieve an approximately even failure distribution. 

The feeder-level separation between train and test was implemented to avoid any data leakage 

related to feeder-level dynamics, such as malfunctioning regulation devices. To account for 

weather patterns resulting in many failures, for example heat storms, it was important to use at 

least a full year of data in both the train and test data sets. The training period was collected 

from January 2019 through April 2020, the test period spanned from May 2020 through May 

2021. Feeders affected by major non-weather events resulting in a high number of failures were 

excluded to ensure that the failure metrics were not skewed by system-related failure events. 
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3.7.2 Pre-calibration Model 

The pre-calibrated model was trained on data across two cross validation groups. For the 

planning and emergency scope, the days within the scope horizon prior to the set of failures 

were included in the positive sample, and a random sample of non-failure samples were 

included in the negative data set.  This model used the XG-Boost machine learning algorithm. 

The hyperparameters were tuned using Bayesian optimization. To identify if any of the 

parameters was leading to overfitting, a learning curve was plotted for a sensitivity of each 

hyperparameter, and parameters which resulted in an excessive separation of performance 

metrics for cross validation splits were manually constrained. The developed model was 

evaluated against the test set. Results are discussed in Section 3.9. 

3.7.3 Calibration 

Some machine learning algorithms such as logistic regression produce true or 'calibrated' 

probability scores but most of them produce 'probability like' numbers or a class label for 

classification. Also, some of the data sampling techniques such as under-sampling might affect 

the model output by disturbing the sample distribution. For some use cases, class label is 

important, and probability is important for others, example ‘a model predicting that you don’t 

have cancer’ vs ‘a model predicting that you’re 49% likely to have cancer’.  

For algorithms that do not produce a true probability and/or in case of under/over sampling, we 

need to calibrate model results to obtain true probability. Thus, calibration is the process of 

producing probability that reflects the true likelihood of events by rescaling their values, so 

they better match the distribution observed in the training data.  

In EPIC 3.20, we are using a Gradient boosting ML algorithm, which does not produce true 

probability. Also, the input data is highly imbalanced and so we under sampled the majority 

class while keeping all the failure labels (minority class) to present more failure examples to 

the mode. Thus, we needed to calibrate our model results. The calibration model was trained 

across the cross-validation groups excluded in developing the uncalibrated model. The 

calibration set consisted of all failures in the train set, and a weighted subsample of the 

remaining data, limiting the total number of rows used in building the model to 1,000,000. The 

scikit-learn CalibratedClassifierCV was leveraged to implement calibration to our model 

results. 

3.7.4 Primary Metrics 

The primary metrics used for this model were Area Under the Precision Recall Curve (PR 

AUC) for the continuous model evaluation and hyper parameter tuning.  For the discrete 

metrics, a probability threshold was selected, and the precision, recall, and F1 score were 

evaluated. 

3.7.5 Benchmark Results 

It is important to create a target for performance when developing a model.  In this project, two 

benchmarks were evaluated.   

First a simple model which used the rate of failure to randomly select and predict a total 

number of failures per prediction period was used.  This Naïve benchmark provides an 

anticipated floor for performance.   
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Second, to capture the status quo, records of interventions associated with current business 

processes were captured and used as baseline performance metric. 

When evaluating the impact of interventions, it was important to not only track outage events, 

but also to track successful interventions. Records of transformer outage and interventions were 

captured on an ongoing basis, and the performance of the model was compared against these 

records, in addition to outage events. 

3.7.5.1 Naïve Benchmark 

The naïve benchmark represents the floor of our anticipated performance.  This is a simple 

model which randomly predicts a number of failures equal to the recorded failures per 

prediction period.  For a number of transformer N, and K failures per prediction period, a 

randomly selected set of transformers, n, are predicted to fail.  The number of true positives is 

expected to be TP = n*K/N.  We can expect the precision (TP/n) of such a model to be K/N, 

and the recall (TP/K) to be n/N.  For all models, the relative improvement over this naïve 

benchmark is calculated, to provide a relative improvement over this simple model. 

3.7.5.2 Status Quo Benchmark 

To develop the status quo data set, both historical and ongoing events needed to be assessed.  In 

particular, as interventions were made in the field, those needed to be captured as successes 

even though they did not result in an outage.  To capture the performance of the status quo 

business processes, work management tickets for dispatch of ad-hoc inspections associated 

with voltage complaints or power quality inspections were utilized as a proxy to predictions.   

3.7.5.3 Power Quality Heuristics 

In the first phase of the project, the benchmark function was developed from a set of heuristics 

developed by the power quality team. These enabled the power quality team to discriminate 

between issues caused by primary service issues, transformers, and individual meters. When 

responding to rule 2 violations or customer complaints, this mechanism has been very 

successful in identifying and mitigating issues. 

This heuristic and that process have also been extremely useful in developing the features used 

in the final model.  However, a major learning of the project was that most of the corrections 

made as a result of the power quality process were the correction of partial voltage conditions 

as a result of fuse failures. Fuse failures can sometimes be associated with equipment failures, 

but more frequently they are a result of transient events, where the fuse successfully protects 

the equipment.   

To evaluate the performance of the heuristics used by the power quality group, it is valid to 

include the resolution of a partial fuse failure as a success.  However, when evaluating 

historical EC tags or outages, a replaced fuse is not captured by these records, and therefore is 

treated as a failure.  For the purpose of predicting and preventing equipment failures, 

identifying a partial fuse failure from a transient event should not be treated as a successful 

prediction.  Ideally, fuse failures could be identified and excluded from the train and evaluation 

set.   Efforts were made to do this, however, there were many challenges resulting from 

complexities in preparing the data which made it challenging to correctly label meter nominal 

voltages, fuse failures and real equipment failures.   
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The outcome of the Part 1 effort was a model that was reasonable at identifying fuse failures, 

but not good at identifying unplanned transformer failures.  In addition, the transformer failure 

models developed in this effort were not much better than the heuristic models, though the 

probabilistic aspect of the model showed potential for prioritizing the transformers for 

inspection.    

Major improvements were made to the processes which determined the nominal voltages on the 

meters and the ability to exclude fuse failure behavior from the training.   Rather than 

benchmarking and training against the power quality process, only transformer equipment 

caused unplanned outages were used for training and evaluating the model. 

For line regulator failures, which were only evaluated in the first phase of the project, the 

benchmark used was the heuristic model used to identify whether voltage anomalies might be 

attributed to a line regulator.  

3.7.6 Model Inspection 

Models were first evaluated against historical failures to identify data issues and improve 

model performance. Once the project team was satisfied with the results, the models were used 

to predict future failures. The predictions are generated for a single day each month and the 

predicted failures are delivered to an external team for review. The predicted failures were also 

investigated by the project team using a clustering algorithm as described in Section 3.7.6.1. 

3.7.6.1 Failure Clustering 

As discussed previously, the EPIC 3.20 model works to identify transformers that might fail 

within the next 30 (or 7 in case of emergency failure model) days. This would help in planning 

resources and in proactively checking or replacing the transformers that are highly probable to 

fail. The next step is to divide the predictions by failure modes so that root cause of failure can 

be understood, and different departments can take care of the issues falling under their domain 

and expertise proactively.  

To serve this purpose, we performed clustering on high probability failure predictions and 

further built a decision tree to identify the characteristics of each of these clusters.  Traditional 

clustering techniques such as k-means suffer from assumptions such as largely spherical 

clusters and the requirement to define number of clusters in advance.  To overcome these 

shortcomings, we used feature reduction and density-based clustering techniques (specifically 

UMAP [17] and HDBScan [16].  The clusters were trained and labeled on the training data 

from the failure models as shown in Figure 14.  A decision tree was then trained using the 

feature data to predict the cluster label and the resulting tree was used to develop meaningful 

labels as shown in Figure 15.  A unique capability of the HDBScan library is the ability to 

apply a trained model to unseen data.  This makes it possible to use this analysis to 

automatically label future predictions to support more automated failure mode labelling, and 

dispatch of investigations. 
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Figure 14: Failure clustering 

There are two clusters, High Voltage #1 & #2, which have high voltage characteristics, in 

investigating these in more detail, it was observed that they were either ~5% or ~10% deviation 

from nominal, which is likely due to different layers of the windings failing. Though this might 

not impact the operational process associated with these types of failures, it provides useful 

information on the failure modes for the transformer standards group.   

Cluster 3 and 4 are both failure modes which have low voltage behavior, but the distinction 

within them is primarily the magnitude of the deviation from nominal.  Because cluster 2 is low 

voltage without low reported load, it may be a scenario where evaluating whether there is a 

metering problem such as energy theft or a parallel secondary failure mode where transformers 

are configured in parallel such that a fuse failure on one transformer will not result in an 

outage, but will overload the remaining transformers on the line. 
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Figure 15: Decision tree for cluster labels 

Note that the above clustering is just a demo of how we applied the clustering to our 

predictions and there could be more clusters to represent different failure modes depending on 

the parameters that we provide to our clustering algorithm.  

3.7.6.2 Incipient Model 

An incipient failure is an issue in the condition of the hardware such that the device can be 

expected to fail in the future unless corrective action is taken. A major challenge in this project 

has been the ability to know if incipient failure was present.  If a failure occurs, it may or may 

not have been observable before the failure occurred, at the time that the prediction is being 

evaluated.  On the flip side, incipient behavior can be present for a very long time, so it might 

be present before the sample is categorized as a failure, given the prediction horizon.  The 

incipient model attempts to get the best sample of incipient vs non-incipient behavior by using 

the assumption that if incipient behavior is present for a failure event, it will be observable 

before the failure event, and not observable after.   

The model was developed by taking sample data from two days before and two days after a 

failure and using it to train a XG-Boost classification model which predicted whether the data 

was ‘pre-failure’ or ‘post-failure’.  The model was then used to predict for the failure events as 

far back as 120 days prior to the failure. While output from this model was not included in the 

final packaged model, it served as a useful benchmark of the upper bound on the features that 

were possible to predict and influenced model design. 

Figure 16 shows the confusion matrix from predicting whether a transformer data point was pre 

or post failure for samples of +/- 2 days.  The percent of True Positive predictions in the lower 

right quadrant indicates that in short horizons, about 28% of failures show some predictable 

signal prior to the failure event.  The 16% false positives in the upper right quadrant indicate 

that there are either some failures which continue to have incipient behavior after failure, or 

there is some fuzziness in the incipient behavior that the model is unable to consistently 

distinguish.    



 

34 

Public  

 

Figure 16: Incipient failure model confusion matrix for two days pre and post failure 

One insight that can be gained using the incipient model is by applying the model to sample for 

time leading up to known failures.   By observing the predictions of incipient behavior in the 

time leading up to known failures, one can estimate how long incipient behaviors are sustained 

prior to failures.  The results of doing this are shown in Figure 17, from 120 to 1 day prior to 

the failure.  From this chart, it can be observed that samples marked as incipient are present at a 

rate of almost 18% up to 1 year prior to the failure.  In the 30 days prior to the failure, it is 

present in about 24% of the samples.  In the days before the failure it increased, about 32%.   In 

the days before the failure, it increased to about 28%.  This shows that there should be an 

increase in the ability to identify failures in the ‘emergency’ time frame.  However, it also 

indicates that there are a substantial number of incipient behaviors that are long lived. 
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Figure 17: Incipient Model recall by days prior to failure 

3.8 Demonstration Deployment / Field Validation 

An invaluable component of this project was to leverage the insights of the PG&E engineering 

and field staff.  After predictions were developed, a user interface was developed to support 

visibility into the underlying voltage and load data for the transformers, and to track the 

engineering review.  The predictions above a selected threshold were delivered on a periodic 

basis to an engineer who performed a desktop review of the prediction to determine if it should 

be escalated to a field inspection or to a proactive replacement program.  A flow chart of this 

process is shown in Figure 18. This project leveraged the insights of the PG&E engineering and 

field staff, and predictions identified as false positives were used to improve the model. 
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Figure 18: Desktop review process 

3.9 Results  

3.9.1 Transformer Failures  

3.9.1.1 Transformer Planning Scope 

The planning scope model for transformers was developed with a horizon of 30 days.  A 

threshold of 1% probability of failure was used.  

Table 2: Planning Scope and Benchmark calibrated test set results 

 
TN FP FN TP Precision Recall F1_Score 

Planning Model 12,012,420 3,715 6,564 152 0.039 0.023 0.029  

Ad hoc 
Benchmark 

11,920,527 225 8,449 29 0.114 0.003 0.007  

 

The result above represents the performance of the model for predicting a failure in a specific 

30 day time frame.  If the metrics are reformulated to evaluate the performance of the 

predictions for identifying a transformer that failed at any point during the evaluation period, 

then the results are significantly improved.  These metrics are shown in Table 3.   

Table 3: Planning Scope performance for predicting any transformer failure in the period. 

 
TN FP FN TP Precision Recall F1_Score 

Planning Model  170,250 778 1,081 89 0.103 0.076 0.087 

 

This finding is aligned with the fact that many incipient behaviors can be sustained for a very 

long time, so predicting exactly when they fail can be difficult.  With this understanding, it 

should be recognized that the relatively un-impressive results in the model evaluation stage 

don’t represent the much better results observed in the desktop and field evaluation. 
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3.9.1.2 Transformer Emergency Scope 

The emergency scope model was developed with a horizon of 7 days.  The results are shown in 

Table 4.  It is notable that the recall is higher than the planning scope predictions, though the 

precision is a bit lower. 

Table 4: Emergency Scope calibrated test set results 

 
TN FP FN TP Precision Recall F1_Score 

Emergency Model 11,458,143 443 1,435 9 0.02 0.006 0.009 

Ad hoc Benchmark 11,920,527 225 8,449 29 0.114 0.003 0.007  

 

Table 5: Emergency Scope performance for predicting any transformer failure in the period. 

 
TN FP FN TP Precision Recall F1_Score 

Planning Model  171,038 100 1,039 21 0.174 0.02 0.036 

 

3.9.2 Engineering and Field Investigations Results  

The engineering field results were evaluated by first having an engineer perform a desktop 

review of the predictions.  In the first phase of the project, this review was performed by the 

Power Quality team, using their existing process.  The predictions were made in June and 

December of 2021.  The outcome of these reviews identified several problems with the model.  

Many of the predictions were determined to be false positives resulting from deficiencies of the 

process used to prepare and filter the smart meters, or mis-mapped meters.  Additionally, 

several were identified to be non-critical issues, such as blown fuses, or smart meter failures.  

There were 17 predictions that did identify problems in the field, but those were primarily fuse 

failures. 

The results from this engineering review are shown in Table 6.   

Table 6:Phase 1 Engineering Review Outcomes 

Values Cannot 

Determine 

False 

Positive 

Non-critical 

issue 

Primary 

issue 

Dispatch 

to Field 

Grand 

Total 

Outcome Count 11 20 13 10 100 154 

Percent 7.14% 12.99% 8.44% 6.49% 64.94% 100.00% 

 

The team took the learnings from Part 1, phase 1 and used them to take a second attempt at the 

problem.  Predictions were made starting in April of 2021 and refreshed monthly through July 

of 2021. The outcomes of the planning reviews in Part 1, phase 2 are summarized in Table 7 

and Figure 19.   
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The results of the engineering review proved to be very successful.  In many cases, even if the 

transformers were not evaluated to be at risk of imminent failure, the engineer agreed that there 

was a clear problem in the operation of the equipment.  Though the goal is to prioritize 

imminent failures, and the model is built to optimize that capability, in practice a transformer 

which only has a 1% probability of failing in the next 30 days may have a 75% probability of 

being flagged as malfunctioning in an engineering review. 

The engineering review also helped to identify several false positives, which resulted in further 

improvements to the model.  For example, some false positives were occurring when a 

neighboring transformer had anomalous voltages, resulting in a false positive on the wrong 

transformer. 

Table 7: Detail of engineering review outcomes for phase 2 planning scope predictions 

Outcome Success Criteria Count 

Cannot Determine Cannot Determine 3 

False Positive False Positive 18 

Suspect Blown Fuse Other issue 3 

Suspect Overload - Bypass Dispatch to Field 10 

Suspect Overload - No Bypass Dispatch to Field 47 

Suspect Parallel Secondary Blown Fuse Dispatch to Field 5 

Suspect Primary Issue Other issue 3 

Suspect Windings Failure Dispatch to Field 4 

Suspect Wiring Issue Dispatch to Field 2 

Suspected Cycling AG load Dispatch to Field 15 

Suspected Meter Issue Other issue 5 
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Figure 19: Summary of engineering review outcomes for phase 2 planning scope predictions 

3.9.3 Field Investigations 

If desktop reviews identified a problem, these investigations were escalated to a field 

investigation.  As of the time of this report, over a dozen transformers had been investigated in 

the field and had identified 11 transformers which presented signs of incipient or imminent 

failure.   

Most of the identified issues were windings failures, however, the process also identified other 

types of failures.  In one case, a transformer which was overloaded with a customer bypassing 

the meter was found to have a secondary wire which was smoking due to the unmetered load.  

In other cases, transformers which were in a parallel secondary configuration were tripped off-

line, leading to the other transformers in the parallel configuration to be overloaded.  This 

scenario has previously resulted in catastrophic transformer failures, so it was valuable to 

identify.  

In addition to that, several of the issues which were identified as not transformer problems, 

were other operational issues, such as customer wiring or meter problems.  Though they may 

not represent the targeted equipment risk, the value of mitigating them is a good consolation in 

dispatching the resources to investigate them. 

Table 8: Outcome of completed field dispatch inspections 

Category Investigation 

Outcomes 

Percent 

Fuse Failure 1 6.25% 

Meter Issue 3 18.75% 

Other 1 6.25% 

Overload - Bypass 1 6.25% 

72%

16%

9%

3%

Success

False Positive

Other issue

Cannot Determine
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Parallel Bank Fuse 

Failure 

1 6.25% 

Windings Failure 6 37.50% 

Wiring issue 3 18.75% 

Grand Total 16 100.00% 

 

Table 9: Outcomes Categories for Field Interventions 

Field Intervention 

Category 

False Positive 

Prediction 

Non-Transformer 

Problem 

Successful 

Intervention 

Grand 

Total 

Outcomes 1 4 11 16 

Percent 6.25% 25.00% 68.75% 100.00

% 

 

3.9.3.1 Forensic Review 

Of the transformers removed from the field, 3 were identified for a forensic teardown in 

PG&E’s Emeryville repair facility.  The results of the first of these teardowns are shown below, 

at the time of this report, the others had not yet been completed. 

3.9.3.1.1 Teardown #1 – Windings Failure 

In May of 2021, a transformer was identified with a 10% probability of failure.  The 

characteristics of the failure were that the voltage on multiple meters had suddenly jumped to 

about 110% of nominal voltage, with no change in load. This behavior was not observed on 

neighboring transformers. The transformer was replaced on May 16th, and taken to Emeryville 

for a teardown.  The voltage behavior of the transformer service points before and after the 

failure and replacement is shown in Figure 20. 

During the teardown, the windings ratio was tested and confirmed to be out of specification.  

Upon opening the case, a distinct smell of burning oil was observed and the oil was noted to be 

a dark color. 
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Figure 20: Voltage behavior of windings failure 

 

 

Figure 21: Photos from windings failure teardown 

3.9.4 Summary of Results 

The final summary of results for the two transformer models are shown in Table 10. 
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Table 10: Results summary for all models 

 
Precision Recall F1 Score Improvement Over 

Status Quo 

Improvement 

over Naïve 

Benchmark 

Transformer 

Planning 

0.023 0.023 0.029 434% 5142% 

Transformer 

Emergency 

0.046 0.004 0.007 105% 5093% 

 

4 Project Details: Part 2 – SSDs and Outage Detection 

4.1 Understanding the Problem 

4.1.1 Definition of an Outage 

Specific types of outages were considered for this part of the project. These selected outages 

are ILIS outages filtered by unplanned, sustained outages with the following causes: Equipment 

Failure, Vegetation, Animal, or Unknown. 

In order to map selected outages to meter event clusters, a Source Side Device (SSD) for each 

outage is located. For outages where the equipment is a protective device (fuse, recloser, circuit 

breaker, or transformer), the device ontology data is used for this mapping. For the outages 

where the equipment is a switch, the upstream SSD is found. 

The prediction horizon is the length of time after the prediction start date, that an outage event 

would result in the prediction being labelled as an outage. The outage start date represents the 

date that the outage occurs or is first identified. The outage end date is the date at which the 

equipment is restored to full working order.  

The primary goal of the Part 2 model is to predict outages using event data prior to a 

catastrophic or unplanned outage. Therefore, the objective is to observe meter events which 

precede an outage in a time prior to the actual outage. These events are called precursor events 

which are meter events that have occurred in the past 90 days before an outage. The precursor 

events are used as features to predict outages that may occur 30 days into the future from a 

given date. For example, if January 1, 2022, is the prediction start date, then the precursor 

events would be all of the events between October 3, 2021 and Jan 1, 2022. The future 

predictions would be for outages that may happen within the next 30 days (until February 1). 

4.1.2 Definition of a Source Side Device (SSD) 

Source side devices are protective devices that operate when an outage happens. In Part 2 of the 

project, the model built is used to predict outages by finding the SSD that would operate during 

the outage. This model considers four types of source side devices which are circuit breakers, 

line reclosers, fuses, and transformers. Even though transformers may not technically be 

considered "SSDs", they are included in our SSD list because transformers usually come with 

cutout fuses as protective devices between them and the primary. These cutout fuses do not 

appear in EDGIS, so the transformers serve as a proxy for them for the purpose of listing all 
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protective devices that may operate when an outage happens. A main list of SSDs is produced 

and each SSD is represented by a "global_id", which is used as the primary key for the datasets. 

 

 

 

Figure 22: Diagram of Circuit Breakers, Fuses, Line Reclosers, Cutoff Fuses (Transformers), Interrupters, and Sectionalizers 

4.2 Literature Review 

A Literature review was performed for fault/outage prediction using smart meter event data 

[18]. The literature review found that there was early outage detection using real-time data 

from SmartMetertm data by filtering and clustering meter events to detect outages, but this was 

used for early detection rather than prediction [18]. This framework is still relevant to the 

project, but because it was not used to create predictions, the framework cannot be applied. The 

next literature review looked into a Predictive Maintenance model (with Natural Language 

Processing (NLP) techniques) in production with real-time Internet of Things (IoT) data [23]. 

This review is relevant to the project scope but more details about the implementation are 

needed since they are not included in the paper. 

There were two frameworks that were considered but ultimately found to be irrelevant due to 

failure to include  real-time predictions. They were: an anomaly (outage) detection framework 

that assigned a Poisson distribution to events and found parameters through an optimization 

[19], and a sliding-window classification approach, using a bag-of-words event representation 
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that also made use of random forest models [20]. Fault analysis of smart meters using a 

fault tree was another framework examined, although fault localization is not in the scope for 

that project and phasing was not considered [22], so it is also irrelevant. Another framework 

considered detection of abnormal events in the smart meters [21] but the preventive 

maintenance application portion was proposed for future work and not included in the paper. 

4.3 Data Collection 

4.3.1 Data Sources 

Developing a supervised model to predict SSD equipment outages requires finding sources for 

meter event data, weather data, fault current data, and outage data. The following types of data 

were used: 

- Meter Event Dataset 

- Feeder Network Trace Dataset 

- Outage Dataset 

- PI Dataset 

- Weather Dataset 

4.3.2 Exploratory Data Analysis (EDA) 

4.3.2.1 Meter Events Data 

A “meter event” is a type of message generated by a SmartMetertm which signifies certain 

specific information about the meter itself or about the voltage and current sensed by the meter.  

For example, a SmartMetertm might communicate a meter event when its voltage sensors detect 

an anomalous voltage or when the SmartMetertm updates its firmware.  There are many 

different types of meter events.  Part 2 of the project focused on the subset of meter event types 

which are expected to have predictive value (e.g. including anomalous-voltage events, but not 

including firmware-updating events).  Each individual “meter event” corresponds to a 

particular type of thing happening to a particular meter in time.  The time granularity of meter 

event timestamps varies with event type. 

4.3.2.2 Outage Dataset 

The Outage Dataset includes all the outages that have occurred and which source side device 

the outage was at. The dataset also includes other columns with information such as cause 

details, location, start and end times, whether it was planned, and whether it was sustained or 

momentary. For this project, this dataset was filtered to include only some data that was needed 

to build the model.  

The first filter is on the types of outages. Outages can be sustained or momentary, and have 

various causes such as company initiated, equipment failure, or wildfire mitigation. For this 

project, the data was filtered to only include sustained outages that were caused by equipment 

failures, vegetation, animals, or unknown causes. 
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Figure 23: Type of Outage 

 

Figure 24: Outages Filtered by Cause ID 

4.3.2.3 Weather Datasets 

Part 2 of the project used three different weather datasets (High Resolution Climatology, PG&E 

Operational Mesoscale Modeling System (POMMS), and Weather Station (Synoptic). 

The High Resolution Climatology dataset includes 2 x 2 km, hourly resolution data from 1989 

to August 2021. The POMMS dataset is a mesoscale meteorological model that runs four times 

per day and produces hourly 2 x 2 km resolution weather forecasts out to 129 hours in the 

future for PG&E’s service territory. The data is used to calculate wind components in the x- 

and y-axis using wind speed (mph) and wind direction (degrees) as input to calculate wind 

speed in meters per second (m/s), wind direction in radians, wind component along the x-axis  

in m/s, and wind component along the y-axis in m/s. The nearest POMMS point to each SSD 

point is calculated using H3, a hexagonal hierarchical geospatial indexing system developed by 

Uber Technologies[24]. This effectively sets the hexagonal area around a POMMS point over 
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which the weather calculated at that point is considered to be in effect. The weather at the SSD 

point is then considered to be the POMMS-based hexagon that intersects with the SSD-based 

hexagon. 

Weather Station or Synoptic Dataset is point data by weather station. Station coverage is 

coarser farther back in time and measurements between networks are not consistent.   

4.3.2.4 Fault Current Dataset 

The Fault current dataset that was used in the EPIC 3.20 project to create features for the Line 

Recloser SSD type. When a recloser opens due to a downstream fault, a fault current value is 

recorded. The data is available as a timeseries. 

4.4 Feature Development 

4.4.1 Event Features 

There is a significant amount of data engineering involved in the meter events and their 

connection to outages.  Certain instances of meter events were identified as phenomena of a 

qualitatively different type than other instances of meter events which had the same putative 

event type.  These differences were identified and leveraged into filters to only include meter 

events which are expected to be of predictive value (i.e. increasing the signal-to-noise ratio). 

An algorithm was developed to aggregate the meter-specific meter events, which are associated 

with a specific meter to the SSD level.  That is, meter events are algorithmically associated 

with the SSD which we expect will operate if the meter event is predictive of a future outage. 

Finally, in order to create event features, certain aggregations of the meter events over 90-day 

windows were taken so that the resulting aggregations reflect events on a particular SSD over a 

particular 90-day window.  Some of the 90-day aggregations included a time-dependent 

weighting, in which the general principle used was that more recent events should be weighted 

more heavily than older events.   

4.4.2 Historical Outage Count Feature 

It was hypothesized that the count of historical outages on each SSD could be used as a feature 

because it may indicate SSD behavior based on its location, etc. For all other features the 

training data is taken from March 2019 to December 2021 but historical outage count is the 

historical value of our data label and may give the model information about the label 

beforehand. Thus, to prevent data leakage, we used data from the year 2018 to create the 

historical outage count feature. When included in model training, this feature turns out to be the 

most important feature. This feature remains the most important feature for the model with a 

feature importance value one order of magnitude higher than the rest of the features. 

4.4.3 SSD type Features 

Primarily four different kinds of SSDs are being considered in this project: fuse, circuit breaker, 

line reclosure and transformers. The rate of failures is different for each of these, specifically 

the rate of failure for transformers is much less than other SSDs. To consider these specific 

differences amongst different types of SSDs, SSD type was considered as a feature for the 
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model. These features are in the top 5 important features, with the 5th ranked SSD type being 

transformers – followed by line reclosures, fuses, and circuit breakers in descending order. 

4.4.4 Season Features 

Based on season, weather conditions would change and factors such as wind gust or wind 

direction in a particular season would play a role in causing outages. The Season Feature was 

created to capture this hypothesis. The feature consists of four values: summer, winter, fall and 

spring corresponding to each example used in the training data. These four values were one-hot 

encoded and used in the model. These features do not currently appear at the top of the model’s 

feature importance list.  

4.4.5 Weather Features 

One of the types of failures being considered in this project is those caused by vegetation. A 

scenario would be when due to high wind gust, a tree collides with a line and causes an outage. 

Another scenario is when wires flap together due to a high wind gust in a particular direction. 

To consider such scenarios, the decision was made to include various weather features. These 

weather features capture the same weather aspects for the model as the season features 

described above, but they can bring some extra intricacies such as the numerical values of wind 

gust, etc. Hence, weather features such as wind gust, wind direction, and ambient temperature 

were formed into features and used to train the model.  Climatology weather data, as described 

in section 4.3.2.3 contains weather data recordings as granular as 2 x 2 kms from an SSD and 

also gives a forecast of weather into the future. These features appear in the top 20 in terms of 

feature importance, with 90 days min of wind speed at the 9th position indicating that a low 

wind gust would lead to less outages.  

4.5 Model Development 

The machine learning model delivers a list of ranked source side device (SSD) outage 

predictions using a horizon of 30-days and was developed using the open source Scikit-learn 

library. 

The data label is based off an outage dataset, which includes SSDs that experienced outages. 

This is combined with a subsampled dataset of non-outage SSDs to form a balanced set for 

model training. Balancing is done at the substation level, meaning outage SSDs under one 

substation are matched with an equal (or as per the imbalance factor) number of non-outages 

under the same substation. This ensures a level playing field for both types of records in case 

there is an issue with the substation. Each of these SSDs is then assigned to either the train or 

test set as described in Section 3.5.1. SSDs in the training dataset are further split into separate 

groups with one of these groups making up the test dataset, one group making the training set, 

and one group making the calibration set.  Further, various datasets are explored to form the 

model features, meter events being the focus of our data exploration. Some additional features 

are used as described in the previous section. 

Tree-based ensemble classification models were the primary class of algorithms used for this 

project as they were appropriate for tabular data and because of their efficiency with this kind 

of data. Also, tree-based algorithms provide automatic feature importance. Specifically, 

Random Forest, Gradient Boosting and XGBoost classifiers were explored as model types. The 

model parameters were determined through hyperparameter tuning using Bayesian 
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optimization. Various feature combination scenarios were simulated to determine if the model 

was picking up features that were expected to be important given an understanding of the 

problem. Key features that had high importance in the models were historical count of outages, 

Voltage anomaly events, meter power cycling events, type of SSD and wind speed. To identify 

if any of the parameters was leading to overfitting, a learning curve was plotted for a sensitivity 

of each hyperparameter, and parameters which resulted in an excessive separation of 

performance metrics for cross validation splits were manually adjusted. 

4.5.1 Outage Labeling  

In order to train the outage failure model, outages on SSDs are used to label the training data. 

The first step was to find SSDs that operated for the selected outages mentioned in 4.3.2.2. The 

SSDs included are transformer cutout fuse, fuse, Dynamic Protective Device (DPD), and circuit 

breakers. If the outage was forced out using a switch or a jumper, the upstream SSD is found as 

the SSD for the outage. Outages were to be predicted for 30 days from the date of running the 

model. Therefore, outage label 1 was given to those SSD/date select combinations where the 

date selected was between the outage date and 30 days prior to it (or the horizon date). 

Based on some deep dives into the initial results, it was found that some of the outages that did 

not see a precursor event because the outage actually happened on a different SSD than the log 

reports. Label refinement was performed with the help of meter number/transformer numbers 

in the fault location. To help the model learn as much as possible, an outage label was provided 

to the SSD from an outage record as well as the one derived from fault location. 

4.5.2 Train/Test Split Strategy 

Separate train and out-of-sample test data sets were developed by using a weighted count of 

outage types in the original outage dataset. Vegetation, Animal, Equipment failure and 

Unknown were the types of outage causes used for the purpose of this project as shown in 

Figure 25. For each substation, for the period of analysis, outages were sampled according to 

their ratio in the original outage dataset to ensure uniformity over outage cause.  An 80-20 split 

was made to create train and test sets out of this dataset using stratified sampling. The Train set 

was further split into five cross validation sets using the same weight as above. Train and test 

sets were further divided based on time to include 2019 and 2020 data for training the model 

and 2021 data for model testing.  
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Figure 25: Train set by outage cause 

 

Figure 26: Outage cause by SSD type 

4.6 Validation Process 

After initial model development, there was some post processing done to validate the model’s 

performance on new data. First, a date was selected to create future predictions, such as for 
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November 9th, 2021. Then, features were created for this date, the model was run, and 

predictions were created. The predictions were made up to 30 days from November 9th, for 

every SSD and had corresponding probabilities of likeliness for positive predictions. Finally, to 

validate these predictions, a check was made on the top 300 or so rows with the highest 

probabilities of an outage to see how many of these SSDs that had predicted an outage were in 

fact true positives. These true positives can be thought of as the number of outages the model 

was able to predict in the future that actually happened. 

An invaluable component of this part of the project was to leverage the insights of the PG&E 

engineering staff.  After predictions were developed, a user interface was developed to support 

visibility into the underlying voltage and meter event data for the SSDs under investigation.  

The predictions above a selected threshold are delivered on a periodic basis to an engineer who 

performs a desktop review of the prediction to validate the model results. This component 

moved the project into the MVP stage via leveraging the insights of PG&E engineering staff to 

identify false positives and continue to improve the model. 

4.7 Primary Metrics 

The primary metrics used for this model were Area Under the Precision Recall Curve (PR 

AUC) for continuous model evaluation and hyper parameter tuning.  For the discrete metrics, a 

probability threshold was selected for each SSD type, and the precision, recall, and F1 score 

were evaluated. 

4.8 Heuristic Approach 

A heuristic approach was developed to investigate a simple way of predicting an outage. For 

this approach, the focus was on sag and swell events that were believed to be good precursor 

events to an outage. A year of outage data was used to create these meter event features by 

aggregating the events by 90 days and 1 year for each row based on the SSD global_id. Then, 

the sag and swell counts were compared for 90 days and 1 year before the prediction date, and 

if there was an increase in the counts, an outage was predicted. 

Overall, this approach had a lower number of true predicted values than the machine learning 

models (7 true positive predictions made on November 17, 2021), which was expected. In 

conclusion, these types of meter events have high predictive value as features for the model. 

4.9 Model Calibration 

Our base model (the tree-based models) produces ‘probability like’ numbers as outputs. 

Knowing the true likelihood of occurrence of an outage is important to understand the gravity 

of the prediction, so we turned to model calibration. The Scikit-learn CalibratedClassifierCV 

was leveraged to implement calibration. The calibration data consisted of all the samples that 

were used to train the base model. Additionally, it included the majority class data, which was 

dropped for the pre-calibration stage model to create a balanced training set. Using the 

complete data, the model was given a sense of how the data distribution is in the real world and 

it could therefore predict the true probabilities of the outages. 
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4.10 Results 

The outage prediction model for the protective devices and transformers was developed with a 

horizon of 30 days, which means that at any day the model is run, it makes predictions for the 

next 30 days. A threshold of 50% probability of outages was used. 

 True 
Negative 

False 
Positive 

False 
Negative 

True 
Positive 

Precision Recall F1_Score 

Gradient boosting 

model – pre-

calibration test 

results 

28164 7326 20180 15522 0.679 0.435 0.53 

 

After training the model, predictions for a particular month showed ~5% of the top 300 model 

predictions were true positives for a given month. Top predictions are looked at and analyzed 

for further model improvements. 

 

 

5 Challenges 

The team encountered numerous challenges in developing the predictive models throughout 

both parts of the project.  

Data Challenges 

Unsurprisingly, significant data challenges were to be navigated as historic data recording 

methods and procedures were not designed for such data applications as existed in this project. 

While standards existed for data entry, they were not always followed or may have changed 

over time, and several opportunities existed for data entry issues to occur.  

In many cases, records were available only as free text, which made leveraging them difficult 

and inaccurate. Data was not accurately labelled and associated. For example, the data did not 

capture the case where a failure was identified and resolved prior to causing an outage. In 

addition, failure records did not necessarily identify the specific device that failed and were 

instead associated with an asset that was removed from the failure, e.g., a failure record may be 

associated with a pole rather than the failed transformer.  

Misconfigured meter cases existed where an incorrect meter form was installed at a service 

point, resulting in an incorrectly normalized voltage in the data. Phasing information, which 

would have allowed a more accurate voltage comparison to be made across multiple meters 

under a transformer, was not accurately recorded. Cases existed where the physical wiring of 

the meters was flipped during field service, causing a new nominal voltage level to run across a 

particular service. Finally, GIS mapping of meters to transformers was found to be error prone. 

The project team identified challenges related to underground cable and regulator data records 

while exploring which use case to focus on.  
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Underground cable locations and events were not consistently tracked. In addition, individual 

underground cable segments were not tracked as assets, and the data did not identify the 

segments that had failed during an outage. Asset characteristics such as cable type were lost for 

equipment that was replaced and could not be used to train failure models. Regulator settings, 

which have a direct effect of the voltage pattern on the circuit and that would have provided the 

project team with useful information in identifying the historical cause and resolution of 

voltage problems on the primary, have not been consistently tracked.  

In Part 1, weather features such as maximum temperature, wind speed, etc. were created using 

the historical weather data that came from weather stations. In Part 2, the aim was to use 

POMMS data to create weather related features as this has better granularity (2 x 2 kms) as 

compared to weather stations. However, the POMMS data was unavailable for the last 6 

months as it is predicted quarterly for the past and then undergoes third party validation, and 

that takes time. Also, the future predictions from POMMS data, that were considered to be used 

for making predictions had mismatches with the historical data and thus can be used only after 

additional processing. All this led to the project being unable to fully leverage the POMMS 

data.  

 

Modelling Challenges 

The project team encountered several model-related challenges. The project team faced the 

challenge of an imbalanced data set, for example in Part 1 only 0.05% of transformers were 

failing on a monthly basis. Capturing the few that did fail was highly important, but any model 

that predicted zero outages might be correct 99.95% of the time. To account for this, the project 

team evaluated the model using imbalance-friendly metrics.  

Definitively determining whether anomalies observed in voltage readings were due to incipient 

failure rather than meter failure, customer misassignment, or secondary wiring issues proved 

challenging until the field investigations were initiated.  Appropriately labelling failures was 

challenging; in some cases, fuse failures were identified as equipment failures, and sometimes 

they were not, incipient behaviors were found to be sustained for long periods of time leading 

to challenges in identifying the specific time frame that a failure might occur.  For many 

failures, no incipient behavior could be observed prior to failure, setting an upper bound on the 

performance of the model in a way that was difficult to correct for. 

Process Challenges 

The project team encountered challenges in internally promoting and driving changes to 

improve the quality and structure of the data sets used. These challenges were somewhat 

mitigated as the project reached maturity and the team was able to demonstrate effective 

results. Certain failure types, e.g. fuse failures, identified by the project team did not have a 

clear owner that would be driven to execute a field review and respond to a failure prediction. 

Inaccurate outage start time 

In ILIS, outage time is the time when an outage is manually recorded in the database and this 

may happen substantially after the outage actually occurred. Thus, to estimate the real time of 

the outages, these ILIS records were matched with meter events. The Meter power up/down 

and partial voltage and GMI low loss (events related with unusually low voltage) were used as 

indicators of actual outages. For this purpose, the meter outage dataset was combined with ILIS 
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outage dataset to match the corresponding events. These estimates were used for Transformer 

and Fuse outages because transformers and fuses are generally not SCADA-enabled, so the 

recorded outage start times may not reflect the actual time when the outage physically started. 

6 Accomplishments  

Developed a machine learning model to predict distribution transformer failure and 
demonstrated success 

The project team successfully executed the machine-learning model to provide a ranked-list of 

distribution transformer predicted failures to other PG&E teams. Of the 270 model predictions 

that were reviewed by engineering experts from April 2021 through February 2022, 64% were 

confirmed to be relevant transformer anomalies requiring further investigation. An additional 

26% were confirmed to be other issues in the distribution system. 

These investigations resulted in an average of one successful intervention with a near-failing 

asset per week (avoiding catastrophic failures) in the first ten months of running the model. In 

the process of developing the final model, the project team also demonstrated the potential 

benefits of automating PG&E’s Power Quality Rule 2 compliance process. Failure category 

clusters were developed to categorize groupings of failure predictions for more efficient 

investigation. 

Fused, cleaned, and strengthened ties between disparate PG&E data sources, while developing 
algorithms to leverage the data 

The project team focused on leveraging existing PG&E data sources, including meter events, 

outage SSD, and weather aggregate data. The mechanisms developed to operationalize this data 

will continue to serve the PG&E analytics community. These newly developed processes 

enabled the project team to collect historical asset failures from records, infer nominal voltage 

for smart meters, determine historical temperature records for individual distribution 

transformers, apply fuse failure heuristics to identify these in existing data, distinguish between 

voltage anomalies due to potential distribution transformer failure as opposed to metering 

configurations such as incorrect wiring or changes in the winding order, identify neighboring 

transformers, and to develop a bellwether voltage for distribution transformers which 

incorporated a mechanism to correct for solar generation. 

Deployed a user interface for users to view predicted distribution transformer failures 

The project team deployed a user interface that allows external PG&E teams to view and 

comment on the predicted distribution transformer failures along with a deep well of data 

associated with the predicted assets. Multiple views exist including viewing the voltage time 

series on the transformer as well as on its neighbors, map-related views, transformer metadata 

including manufacturer, model, and year of manufacture. The user interface is currently being 

used by other PG&E teams to validate and leverage monthly model predictions. 

Deployed a preliminary user interface for testing to investigate features of predicted SSD outages 

The project team created a user interface for engineers to view the predicted SSD outages along 

with a deep well of data associated with the meter events and weather measurements. For the 

MVP user interface to be ready for external users, multiple future tasks are planned to include 

additional functionality such as a process for checking off predictions for validity and an option 
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to comment on predictions that have been reviewed. A map-related view to show the outage 

and associated SSDs is also planned to be added. Multiple views have already been added such 

as a view of the meter events over time for the SSD global ID that is predicted to be an outage 

and weather measurements such as daily maximum wind speeds by SSD global ID.  

Predicting that line equipment will require maintenance means that maintenance can be scheduled 
within normal operating workflow and avoid expensive unscheduled maintenance 

Permitting targeted inspections as opposed to periodic inspections will better optimize field 

resources. The reliability benefits of 1.2 million customer-minutes per year results in an 

estimated economic benefit to customers of $3.1 million per year. 

Leveraged modern project management tools to drive project resiliency and relevance 

The project team employed agile project management and demonstrated resiliency by 

navigating staff turnover while continuing to drive forward progress. The project team 

prioritized stakeholder engagement via outreach meetings to a broader audience, and biweekly 

meetings with the project’s business sponsor. 

7 Learnings and Recommendations 

Improving failure records and root cause tracking 

The key data element for any failure analysis is the record of the failures and, ideally, a root 

cause analysis of the failure. The project team recommends standardizing and improving failure 

recording and root cause data collection. 

Tracking fuse failures and fuse resets 

When looking at meter voltage data, fuse failures are very distinct. In some cases, a fuse failure 

will be temporary and will be resolved after reset, and in others it will be a symptom of a 

transformer failure. Records of cut-out and primary fuse resets would be valuable information 

in distinguishing between these cases, but these are not reliably tracked. The project team 

recommends that actions to reset fuses be tracked in a systematic way, to enable better capture 

of the impact and resolution of these events in the system. 

Maintaining a history of grid configuration 

Reliably identifying the transformer and grid topology relationships for historical failures 

proved challenging. While the project team found mechanisms to mitigate this, it would be 

preferable to develop centralized mechanisms to track these changes systematically and enable 

point in time reconstruction of the grid for analytics. 

Improving smart meter data 

Smart meters do not provide meter nominal voltage, which must be inferred from the data. This 

is a relatively complex process, and events such as wires being reordered can create data 

quality issues. Smart meter vendors should be encouraged to develop mechanisms to capture 

and report the nominal voltage. 

Leveraging analytical techniques for mitigating label errors and data quality issues 

Label errors were a particular challenge for this project but are not unexpected in any real-

world application. The use of confident learning for modeling and label inspections, and other 
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methods such as clustering of failure predictions to identify potential data quality issues are 

good mechanisms to mitigate this issue. 

Investing in analytical infrastructure 

Though many improvements have been made to the data and IT infrastructure to support 

analytics, challenges were still encountered in enabling end to end analytics solutions. The 

project team recommends that PG&E continue the development of its analytical infrastructure.  

Leveraging internal talent 

Utilities should actively invest in internal talent when considering new analytical projects and 

software development. Internal teams can be more cost-effective, nimbler, and can reduce 

business continuity risks to improve data quality within business systems when compared 

against external vendors.  

Using agile project management 

Agile development continues to show success in managing data science for PG&E EPIC 

projects and provides teams with the resiliency and nimbleness to manage change while driving 

growth. 

Improving outage records (outage start time, equipment id, fault location) 

There are a number of improvements that can be made to existing outage records. The project 

team discovered inaccurate outage start times, missing equipment IDs, and incorrect fault 

location records. It is recommended that these records are cleaned at their source so that they 

are accurate. 

Creating and maintaining documentation or a data dictionary on meter event data 

Meter event data was used for the first time during this project, but there is not currently any 

form of documentation on the dataset. The project team reached out to vendors for additional 

information but did not receive a response. In lieu of this, some information was provided from 

stakeholders. The project team recommends creating documentation or a data dictionary to 

better understand the dataset. This would help with feature development and assist future work. 

It would also be beneficial to create more direct relationships with vendors who provide data to 

reduce ambiguity.  

8 Path to Production 

The project’s products were developed with repeatability and maintainability in mind. With the 

implementation of the new analytics platform, a production-ready model for Part1 and a MVP 

for Part 2 have been developed, which supports updates of the source data sets, retraining and 

evaluation of models, and deployment of updated models. In addition, user interfaces were 

developed during Part 1 and 2 which can support evaluation and track outcomes of the 

predictions. 

Because the products developed in this project have continued to display a clear ability to 

identify assets nearing failure, internal organizations that manage and monitor assets have 

committed resources to support processing and acting on these predictions going forward, after 

the conclusion of the EPIC project. In addition, some of these organizations have expressed 

intent to provide product ownership roles. 
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To support the path to production, some additional work will be needed to transition to a 

production level product. Additional features are desired to support ease of use and to 

incorporate the process into a risk-based decision-making process by incorporating 

consequence model outputs into the prioritization process. On an ongoing basis, resources need 

to be maintained to support continuing operation and improvement of the products. 

9 Technology Transfer Plan  

9.1 IOU’s Technology Transfer Plans 

A primary benefit of the EPIC program is the technology and knowledge sharing that occurs 

both internally within PG&E, and externally with other IOUs, the California Energy 

Commission (CEC) and the industry. In order to facilitate this knowledge sharing, PG&E will 

share the results of this project in industry workshops and through public reports published on 

the PG&E website. Specifically, below are information sharing forums where the results and 

lessons learned from this EPIC project were presented or plan to be presented: 

9.1.1 Information Sharing Forums Held 

• The Utility of the Future - Transforming Utilities Through Innovation 

Organized by EUCI 

Phoenix, AZ – December 2019 

• AI: A Reverse Pitch Virtual Event.  

Organized by EPRI 

Virtual – May 2021 

• PG&E and SCE - Session on Predictive Maintenance 

Organized by PG&E 

Virtual – October 2021 

• 2021 EPIC Symposium 

Organized by EPIC Program 

Virtual – December 2021 

9.1.2 Adaptability to other Utilities and Industry 

The following findings of this project are relevant and adaptable to other utilities and the 

industry:  

- Smart meter voltage and loading data can be used to identify incipient transformer 

failures. 

- Meter event data, weather data, and historical outage counts can be used to predict 

outages with precursor events.  

9.2 Data Access 

Upon request, PG&E will provide access to data collected that is consistent with the CPUC's 

data access requirements for EPIC data and results. 
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10 Conclusion 

EPIC 3.20 has successfully demonstrated that a machine learning model can be used to identify 

and mitigate equipment failures utilizing smart meter voltage data and other information.  Both 

an emergency scope and planning scope have been evaluated.  The planning scope model has 

demonstrated a 4 fold improvement over existing processes for mitigating incipient problems 

on transformers. As a result, some of the predictions have identified incipient failures in 

distribution assets, mainly transformers, and these have proactively been replaced, leading to 

improvements in reliability, affordability and risk.  

Despite being at different stages in the development lifecycle, with the distribution transformer 

model being used operationally and closer to production and the source side device outage 

model only recently reaching MVP staging – both models hold the potential of growing into 

full-fledged production models. The success of this project opens the door to continue to use 

data in order to improve existing utilities’ asset management practices, which translates into a 

safer, more reliable, and more affordable service for customers across the country. 
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12.2 Definition of Terms and Abbreviations   

AMI Advanced Metering Infrastructure. This 

represents the fleet of Smart Meters and the 

mesh network that enables them to report 

back to a central database. 

ATS Applied Technology Services, a department 

at PG&E for laboratory for engineering 

analysis. 

Distribution The distribution portion of the electrical grid 

that facilitates the movement of lower 

voltage electricity. Majority of overhead 

conductors are part of the distribution grid. 

Distribution Transformer The transformer that steps voltage down in 

the final phase of the electric distribution 

from medium voltage to low voltage which is 

the voltage level provided to the customer. 

DPD Dynamic Protective Device, a device that 

opens when a fault is detected and recloses to 

attempt to re-establish service. Reclosing is 

designed to reduce or eliminate the effects of 

temporary faults 

EC Electric Corrective 

EDGIS Economic Development Geographic 

Information System 

Feeder Electrical line segments of the distribution 

grid.  

GMI Generic Meter Interface provides meter 

reads, data logs, and event logs of the meter 

data stored on Itron 

GIS Geospatial Information System 

Grid  The electric grid 

HFTD High Fire Threat District. As defined by the 

CPUC in Decision 17-12-02412, HFTDs are 

 

 

12 CPUC Decision 17-12-024 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M200/K976/200976667.PDF
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regions where there is an elevated or extreme 

risk of destructive wildfire. 

ILIS Integrated Logging Information System 

IOU Investor Owned Utility 

Line Regulator A system used to maintain a constant, steady 

voltage level. 

Low Voltage 0 - 600 Volts 

LVR Line voltage regulator 

Medium Voltage 5,000 – 35,000 Volts 

Meter Device that collects electric and natural gas 

usage data from homes or businesses. 

MW Megawatt. 1,000,000 watts; MW is the 

standard unit of measure for describing 

feeder capacity.  

MWh Megawatt hour  

NLP Natural Language Processing 

PG&E Pacific Gas and Electric Corporation.  

Power Transformer Device which permits changing the high 

voltage needed for distribution down to the 

lower voltage for customer use. Overhead 

transformers are usually bolted to a wood 

pole and connected by overhead high voltage 

cables to individual customer service meters. 

Underground, transformers are usually green 

steel cabinets mounted on concrete pads and 

connected by underground high voltage 

cables to individual customer service meters. 

Primary High voltage or input side of a transformer. 

Includes the circuit that feeds into the 

transformer. 

POMMS PG&E Operational Mesoscale Modeling 

System 

R&D Research and Development 

RUL Remaining Useful Life 

Sag Decrease to between 0.1 and 0.9 pu in rms 

voltage or current at the power frequency for 

durations of 0.5 cycles to 1 minute. 
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SAP System Applications and Products in Data 

Processing 

SCADA Supervisory Control and Data Acquisition. A 

software and communications system which 

enables capture and archiving of 

measurement data. 

Secondary The output side of a transformer and the 

circuit connected with it. Voltage delivered 

between 0 and 750 volts. Also referred to as 

service delivery voltage. 

Service Point Specific location at a premise where PG&E 

supplies service. (e.g., electric meter, gas 

meter) 

SIQ Sensor IQ, a project to update the firmware 

of a subset of our Smart Meters™ to enable 

additional and higher resolution 

measurements, along with customer event 

trap configurations. 

SME Subject Matter Expert 

SSD Source Side Device Source are protective 

devices that operate when an outage happens. 

Examples of these protective devices are 

circuit breakers, line reclosers, and fuses. 

Swell Increase to between 1.1 pu and 1.8 pu in rms 

voltage or current at the power frequency 

durations from 0.5 to 1 minute. 

TD&D Technology Demonstration and Deployment 

Volt Unit used to measure electrical potential of 

pressure. 

WM Work Management 

 


